{"title":"定向刨花板热解模型的建立。第一部分:热分解的动力学和热力学","authors":"Junhui Gong, Hong Zhu, Hongen Zhou, S. Stoliarov","doi":"10.1177/0734904120982887","DOIUrl":null,"url":null,"abstract":"Oriented strand board is a widely used construction material responsible for a substantial portion of the fire load of many buildings. To accurately model the response of oriented strand board to fire, thermogravimetric analysis, differential scanning calorimetry, and microscale combustion calorimetry tests were carried out to construct a thermal decomposition model using a numerical solver, ThermaKin, and a hill climbing optimization algorithm. The model included a single-step water vaporization reaction and four consecutive reactions representing thermal decomposition of organic constituents of oriented strand board. The experiments and modeling revealed that the first two of the four reactions are endothermic, while the last two are exothermic. The net heat of decomposition was found to be near zero. The heat capacities of condensed-phase species and heats of combustion of evolved gases were also determined. The heats of combustion were found to vary over the course of decomposition—the trend captured by the model. Development of a complete pyrolysis model for this material will be a subject of Part II of this work.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":"39 1","pages":"190 - 204"},"PeriodicalIF":1.9000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0734904120982887","citationCount":"10","resultStr":"{\"title\":\"Development of a pyrolysis model for oriented strand board. Part I: Kinetics and thermodynamics of the thermal decomposition\",\"authors\":\"Junhui Gong, Hong Zhu, Hongen Zhou, S. Stoliarov\",\"doi\":\"10.1177/0734904120982887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oriented strand board is a widely used construction material responsible for a substantial portion of the fire load of many buildings. To accurately model the response of oriented strand board to fire, thermogravimetric analysis, differential scanning calorimetry, and microscale combustion calorimetry tests were carried out to construct a thermal decomposition model using a numerical solver, ThermaKin, and a hill climbing optimization algorithm. The model included a single-step water vaporization reaction and four consecutive reactions representing thermal decomposition of organic constituents of oriented strand board. The experiments and modeling revealed that the first two of the four reactions are endothermic, while the last two are exothermic. The net heat of decomposition was found to be near zero. The heat capacities of condensed-phase species and heats of combustion of evolved gases were also determined. The heats of combustion were found to vary over the course of decomposition—the trend captured by the model. Development of a complete pyrolysis model for this material will be a subject of Part II of this work.\",\"PeriodicalId\":15772,\"journal\":{\"name\":\"Journal of Fire Sciences\",\"volume\":\"39 1\",\"pages\":\"190 - 204\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0734904120982887\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fire Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0734904120982887\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0734904120982887","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of a pyrolysis model for oriented strand board. Part I: Kinetics and thermodynamics of the thermal decomposition
Oriented strand board is a widely used construction material responsible for a substantial portion of the fire load of many buildings. To accurately model the response of oriented strand board to fire, thermogravimetric analysis, differential scanning calorimetry, and microscale combustion calorimetry tests were carried out to construct a thermal decomposition model using a numerical solver, ThermaKin, and a hill climbing optimization algorithm. The model included a single-step water vaporization reaction and four consecutive reactions representing thermal decomposition of organic constituents of oriented strand board. The experiments and modeling revealed that the first two of the four reactions are endothermic, while the last two are exothermic. The net heat of decomposition was found to be near zero. The heat capacities of condensed-phase species and heats of combustion of evolved gases were also determined. The heats of combustion were found to vary over the course of decomposition—the trend captured by the model. Development of a complete pyrolysis model for this material will be a subject of Part II of this work.
期刊介绍:
The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).