冰山融化

IF 25.4 1区 工程技术 Q1 MECHANICS
C. Cenedese, F. Straneo
{"title":"冰山融化","authors":"C. Cenedese, F. Straneo","doi":"10.1146/annurev-fluid-032522-100734","DOIUrl":null,"url":null,"abstract":"Iceberg calving accounts for half of the mass discharge from the Greenland and Antarctic ice sheets, which has increased dramatically over the last two decades. Through their displacement and progressive melt, icebergs can impact both the regional and large-scale ocean circulation and marine ecosystems by affecting its stratification and nutrient and carbon cycling. Freshwater input due to iceberg melt has the potential to impact regional sea ice distribution and the global overturning circulation. Notwithstanding their importance, our understanding of where and how icebergs melt is limited and their representation in ocean and climate models is oversimplistic, in part because they are informed by only a handful of observations. As a result, model-based predictions of iceberg melt rates, of the fate of the meltwater, and of its impact on the ocean are highly uncertain. New observational, modeling, and experimental studies are needed to improve our understanding of iceberg melting and hence, the forecasting power of climate models. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":25.4000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Icebergs Melting\",\"authors\":\"C. Cenedese, F. Straneo\",\"doi\":\"10.1146/annurev-fluid-032522-100734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iceberg calving accounts for half of the mass discharge from the Greenland and Antarctic ice sheets, which has increased dramatically over the last two decades. Through their displacement and progressive melt, icebergs can impact both the regional and large-scale ocean circulation and marine ecosystems by affecting its stratification and nutrient and carbon cycling. Freshwater input due to iceberg melt has the potential to impact regional sea ice distribution and the global overturning circulation. Notwithstanding their importance, our understanding of where and how icebergs melt is limited and their representation in ocean and climate models is oversimplistic, in part because they are informed by only a handful of observations. As a result, model-based predictions of iceberg melt rates, of the fate of the meltwater, and of its impact on the ocean are highly uncertain. New observational, modeling, and experimental studies are needed to improve our understanding of iceberg melting and hence, the forecasting power of climate models. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":50754,\"journal\":{\"name\":\"Annual Review of Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":25.4000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-fluid-032522-100734\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-032522-100734","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 7

摘要

冰山崩解占格陵兰岛和南极冰盖大量排放的一半,在过去二十年中,冰山崩解量急剧增加。通过它们的位移和逐渐融化,冰山可以影响区域和大范围的海洋环流和海洋生态系统,通过影响其分层和营养和碳循环。冰山融化引起的淡水输入有可能影响区域海冰分布和全球翻转环流。尽管它们很重要,但我们对冰山在哪里以及如何融化的理解是有限的,而且它们在海洋和气候模型中的代表性过于简单,部分原因是它们仅通过少量观测得到信息。因此,基于模型的冰山融化速度、融水的命运及其对海洋影响的预测是高度不确定的。需要新的观测、建模和实验研究来提高我们对冰山融化的理解,从而提高气候模式的预测能力。预计流体力学年度评论第55卷的最终在线出版日期为2023年1月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Icebergs Melting
Iceberg calving accounts for half of the mass discharge from the Greenland and Antarctic ice sheets, which has increased dramatically over the last two decades. Through their displacement and progressive melt, icebergs can impact both the regional and large-scale ocean circulation and marine ecosystems by affecting its stratification and nutrient and carbon cycling. Freshwater input due to iceberg melt has the potential to impact regional sea ice distribution and the global overturning circulation. Notwithstanding their importance, our understanding of where and how icebergs melt is limited and their representation in ocean and climate models is oversimplistic, in part because they are informed by only a handful of observations. As a result, model-based predictions of iceberg melt rates, of the fate of the meltwater, and of its impact on the ocean are highly uncertain. New observational, modeling, and experimental studies are needed to improve our understanding of iceberg melting and hence, the forecasting power of climate models. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
54.00
自引率
0.40%
发文量
43
期刊介绍: The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions. Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license. This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信