白令海季节性海冰早期融化的气候预测

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Baoqiang Tian , Ke Fan
{"title":"白令海季节性海冰早期融化的气候预测","authors":"Baoqiang Tian ,&nbsp;Ke Fan","doi":"10.1016/j.aosl.2023.100417","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the impact of large-scale circulation anomalies on sea-ice melting, this paper develops a statistical forecasting model for the seasonal sea-ice early melt onset (EMO) in the Bering Sea using the interannual increment prediction method. The prediction model considers three physically meaningful predictors: the January Beaufort High (P1-H500), the November sea-level pressure (P2-SLP) over eastern Siberia, and the November snow cover over the eastern European Plain (P3-Snowc). P1-H500 can influence the sea surface temperature (SST) anomaly in the Bering Sea through ocean–atmosphere interactions, and this SST anomaly can persist from January to March. Subsequently, it affects the EMO in the Bering Sea. P2-SLP exhibits a close association with the east part of the midlatitude North Pacific SST in November. The colder midlatitude North Pacific SST anomalies, which persist from November until January and February of the following year, will be accompanied by warmer SST anomalies in the Bering Sea, which result in a decreased sea-ice extent and a later-than-usual EMO. The Arctic dipole anomaly in January is one of the ways in which P3-Snowc affects the EMO in the following year. The predicted EMO shows good agreement with the observed EMO in the cross-validation test for 1981–2022, with a temporal correlation coefficient of 0.45, exceeding the 99% confidence level. The prediction accuracy of the prediction model for positive and negative abnormal years of EMO is 60% and 41%, respectively.</p><p>摘要</p><p>基于大尺度环流异常对海冰消融的影响过程, 本文采用年际增量预测方法研制了白令海季节性海冰早期消融开始日期(EMO)的统计预测模型. 预测模型选取了3个具有明确物理意义的预测因子: 1月波弗特高压, 前期11月东西伯利亚地区海平面气压, 以及11月东欧平原积雪覆盖率. 1月波弗特高压可以通过海气相互作用影响白令海地区海温异常, 该海温异常能够从1月持续到3月, 进而影响白令海EMO. 11月东西伯利亚地区海平面气压与11月至次年2月北太平洋中纬度东部海温密切相关. 伴随着北太平洋中纬度东部冷海温异常的出现, 白令海地区会出现暖海温异常, 进而导致白令海海冰范围减少, EMO较晚. 1月北极偶极子异常是11月东欧平原积雪覆盖率影响次年白令海EMO的桥梁之一. 1981−2022年的交叉检验结果表明: 统计模型对白令海EMO具有较好的预测能力, 预测与观测的EMO之间时间相关系数达到了0.45, 超过了99%的置信水平. 统计模型对白令海EMO正常年份和异常年份的预测准确率分别为60%和41%.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 2","pages":"Article 100417"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674283423001034/pdfft?md5=811012057c575862d0c9e49a13d1d654&pid=1-s2.0-S1674283423001034-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Climate prediction of the seasonal sea-ice early melt onset in the Bering Sea\",\"authors\":\"Baoqiang Tian ,&nbsp;Ke Fan\",\"doi\":\"10.1016/j.aosl.2023.100417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on the impact of large-scale circulation anomalies on sea-ice melting, this paper develops a statistical forecasting model for the seasonal sea-ice early melt onset (EMO) in the Bering Sea using the interannual increment prediction method. The prediction model considers three physically meaningful predictors: the January Beaufort High (P1-H500), the November sea-level pressure (P2-SLP) over eastern Siberia, and the November snow cover over the eastern European Plain (P3-Snowc). P1-H500 can influence the sea surface temperature (SST) anomaly in the Bering Sea through ocean–atmosphere interactions, and this SST anomaly can persist from January to March. Subsequently, it affects the EMO in the Bering Sea. P2-SLP exhibits a close association with the east part of the midlatitude North Pacific SST in November. The colder midlatitude North Pacific SST anomalies, which persist from November until January and February of the following year, will be accompanied by warmer SST anomalies in the Bering Sea, which result in a decreased sea-ice extent and a later-than-usual EMO. The Arctic dipole anomaly in January is one of the ways in which P3-Snowc affects the EMO in the following year. The predicted EMO shows good agreement with the observed EMO in the cross-validation test for 1981–2022, with a temporal correlation coefficient of 0.45, exceeding the 99% confidence level. The prediction accuracy of the prediction model for positive and negative abnormal years of EMO is 60% and 41%, respectively.</p><p>摘要</p><p>基于大尺度环流异常对海冰消融的影响过程, 本文采用年际增量预测方法研制了白令海季节性海冰早期消融开始日期(EMO)的统计预测模型. 预测模型选取了3个具有明确物理意义的预测因子: 1月波弗特高压, 前期11月东西伯利亚地区海平面气压, 以及11月东欧平原积雪覆盖率. 1月波弗特高压可以通过海气相互作用影响白令海地区海温异常, 该海温异常能够从1月持续到3月, 进而影响白令海EMO. 11月东西伯利亚地区海平面气压与11月至次年2月北太平洋中纬度东部海温密切相关. 伴随着北太平洋中纬度东部冷海温异常的出现, 白令海地区会出现暖海温异常, 进而导致白令海海冰范围减少, EMO较晚. 1月北极偶极子异常是11月东欧平原积雪覆盖率影响次年白令海EMO的桥梁之一. 1981−2022年的交叉检验结果表明: 统计模型对白令海EMO具有较好的预测能力, 预测与观测的EMO之间时间相关系数达到了0.45, 超过了99%的置信水平. 统计模型对白令海EMO正常年份和异常年份的预测准确率分别为60%和41%.</p></div>\",\"PeriodicalId\":47210,\"journal\":{\"name\":\"Atmospheric and Oceanic Science Letters\",\"volume\":\"17 2\",\"pages\":\"Article 100417\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674283423001034/pdfft?md5=811012057c575862d0c9e49a13d1d654&pid=1-s2.0-S1674283423001034-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674283423001034\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283423001034","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于大尺度环流异常对海冰融化的影响,本文利用年际增量预测法建立了白令海季节性海冰早融期(EMO)统计预测模型。该预测模型考虑了三个有物理意义的预测因子:1 月波弗特高点(P1-H500)、11 月西伯利亚东部海平面气压(P2-SLP)和 11 月欧洲东部平原积雪(P3-Snowc)。P1-H500 可通过海洋-大气相互作用影响白令海的海面温度(SST)异常,这种海面温度异常可从 1 月持续到 3 月。随后,它会影响白令海的海洋环流。P2-SLP 在 11 月份与北太平洋中纬度东部的海温密切相关。中纬度北太平洋海温异常从 11 月一直持续到次年的 1 月和 2 月,白令海的海温异常也会随之变暖,从而导致海冰范围减小,EMO 晚于常年。1 月份的北极偶极异常是 P3-Snowc 影响下一年 EMO 的方式之一。在1981-2022年的交叉验证测试中,预测的EMO与观测到的EMO显示出良好的一致性,时间相关系数为0.45,超过了99%的置信水平。摘要基于大尺度环流异常对海冰消融的影响过程,本文采用年际增量预测方法研制了白令海季节性海冰早期消融开始日期(EMO)的统计预测模型。预测模型选取了 3 个具有明确物理意义的预测因子:1月波弗特高压, 前期11月东西伯利亚地区海平面气压, 以及11月东欧平原积雪覆盖率.1月波弗特高压可以通过海气相互作用影响白令海地区海温异常, 该海温异常能够从1月持续到3月, 进而影响白令海emo.11月东西伯利亚地区海平面气压与11月至次年2月北太平洋中纬度东部海温密切相关。伴随着北太平洋中纬度东部冷海温异常的出现, 白令海地区会出现暖海温异常, 进而导致白令海海冰范围减少, emo较晚.1月北极偶极子异常是11月东欧平原积雪覆盖率影响次年白令海emo的桥梁之一。1981-2022年的交叉检验结果表明: 统计模型对白令海emo具有较好的预测能力,预测与观测的emo之间时间相关系数达到了0.45, 超过了99%的置信水平。统计模型对白令海emo 正常年份和异常年份的预测准确率分别为 60%和 41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Climate prediction of the seasonal sea-ice early melt onset in the Bering Sea

Based on the impact of large-scale circulation anomalies on sea-ice melting, this paper develops a statistical forecasting model for the seasonal sea-ice early melt onset (EMO) in the Bering Sea using the interannual increment prediction method. The prediction model considers three physically meaningful predictors: the January Beaufort High (P1-H500), the November sea-level pressure (P2-SLP) over eastern Siberia, and the November snow cover over the eastern European Plain (P3-Snowc). P1-H500 can influence the sea surface temperature (SST) anomaly in the Bering Sea through ocean–atmosphere interactions, and this SST anomaly can persist from January to March. Subsequently, it affects the EMO in the Bering Sea. P2-SLP exhibits a close association with the east part of the midlatitude North Pacific SST in November. The colder midlatitude North Pacific SST anomalies, which persist from November until January and February of the following year, will be accompanied by warmer SST anomalies in the Bering Sea, which result in a decreased sea-ice extent and a later-than-usual EMO. The Arctic dipole anomaly in January is one of the ways in which P3-Snowc affects the EMO in the following year. The predicted EMO shows good agreement with the observed EMO in the cross-validation test for 1981–2022, with a temporal correlation coefficient of 0.45, exceeding the 99% confidence level. The prediction accuracy of the prediction model for positive and negative abnormal years of EMO is 60% and 41%, respectively.

摘要

基于大尺度环流异常对海冰消融的影响过程, 本文采用年际增量预测方法研制了白令海季节性海冰早期消融开始日期(EMO)的统计预测模型. 预测模型选取了3个具有明确物理意义的预测因子: 1月波弗特高压, 前期11月东西伯利亚地区海平面气压, 以及11月东欧平原积雪覆盖率. 1月波弗特高压可以通过海气相互作用影响白令海地区海温异常, 该海温异常能够从1月持续到3月, 进而影响白令海EMO. 11月东西伯利亚地区海平面气压与11月至次年2月北太平洋中纬度东部海温密切相关. 伴随着北太平洋中纬度东部冷海温异常的出现, 白令海地区会出现暖海温异常, 进而导致白令海海冰范围减少, EMO较晚. 1月北极偶极子异常是11月东欧平原积雪覆盖率影响次年白令海EMO的桥梁之一. 1981−2022年的交叉检验结果表明: 统计模型对白令海EMO具有较好的预测能力, 预测与观测的EMO之间时间相关系数达到了0.45, 超过了99%的置信水平. 统计模型对白令海EMO正常年份和异常年份的预测准确率分别为60%和41%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信