{"title":"复合非承重轻钢框架墙的耐火性能","authors":"Seddik M Khetata, P. Piloto, Ana BR Gavilán","doi":"10.1177/0734904119900931","DOIUrl":null,"url":null,"abstract":"The light steel frame walls are mostly used for non-load bearing applications. The light steel framed walls are made with studs and tracks that require fire protection, normally achieved by single plasterboard, by composite protection layers or by insulation of the cavity. The partition walls are fire rated to resist by integrity and insulation. Seven small-scale specimens were tested to define the fire resistance of non-load bearing light steel frame walls made with different materials. All tests were validated using two-dimensional numerical models, based on the finite-element method, the finite-volume method and hybrid finite-element method. A good agreement was achieved between the numerical and the experimental results from fire tests. The fire resistance increases with the number of studs and also with the thickness of the protection layers. The hybrid finite-element method solution method looks to be the best approximation model to predict fire resistance.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":"38 1","pages":"136 - 155"},"PeriodicalIF":1.9000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0734904119900931","citationCount":"14","resultStr":"{\"title\":\"Fire resistance of composite non-load bearing light steel framing walls\",\"authors\":\"Seddik M Khetata, P. Piloto, Ana BR Gavilán\",\"doi\":\"10.1177/0734904119900931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The light steel frame walls are mostly used for non-load bearing applications. The light steel framed walls are made with studs and tracks that require fire protection, normally achieved by single plasterboard, by composite protection layers or by insulation of the cavity. The partition walls are fire rated to resist by integrity and insulation. Seven small-scale specimens were tested to define the fire resistance of non-load bearing light steel frame walls made with different materials. All tests were validated using two-dimensional numerical models, based on the finite-element method, the finite-volume method and hybrid finite-element method. A good agreement was achieved between the numerical and the experimental results from fire tests. The fire resistance increases with the number of studs and also with the thickness of the protection layers. The hybrid finite-element method solution method looks to be the best approximation model to predict fire resistance.\",\"PeriodicalId\":15772,\"journal\":{\"name\":\"Journal of Fire Sciences\",\"volume\":\"38 1\",\"pages\":\"136 - 155\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0734904119900931\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fire Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0734904119900931\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0734904119900931","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Fire resistance of composite non-load bearing light steel framing walls
The light steel frame walls are mostly used for non-load bearing applications. The light steel framed walls are made with studs and tracks that require fire protection, normally achieved by single plasterboard, by composite protection layers or by insulation of the cavity. The partition walls are fire rated to resist by integrity and insulation. Seven small-scale specimens were tested to define the fire resistance of non-load bearing light steel frame walls made with different materials. All tests were validated using two-dimensional numerical models, based on the finite-element method, the finite-volume method and hybrid finite-element method. A good agreement was achieved between the numerical and the experimental results from fire tests. The fire resistance increases with the number of studs and also with the thickness of the protection layers. The hybrid finite-element method solution method looks to be the best approximation model to predict fire resistance.
期刊介绍:
The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).