嵌入特征值分配法计算线性动力系统的不同实现

IF 0.3 Q4 COMPUTER SCIENCE, CYBERNETICS
Gergely Szlobodnyik, G. Szederkényi
{"title":"嵌入特征值分配法计算线性动力系统的不同实现","authors":"Gergely Szlobodnyik, G. Szederkényi","doi":"10.14232/actacyb.291870","DOIUrl":null,"url":null,"abstract":"In this paper we investigate realizability of discrete time linear dynamical systems (LDSs) in fixed state space dimension. We examine whether there exist different Θ = (A,B,C,D) state space realizations of a given Markov parameter sequence Y with fixed B, C and D state space realization matrices. Full observation is assumed in terms of the invertibility of output mapping matrix C. We prove that the set of feasible state transition matrices associated to a Markov parameter sequence Y is convex, provided that the state space realization matrices B, C and D are known and fixed. Under the same conditions we also show that the set of feasible Metzler-type state transition matrices forms a convex subset. Regarding the set of Metzler-type state transition matrices we prove the existence of a structurally unique realization having maximal number of non-zero off-diagonal entries. Using an eigenvalue assignment procedure we propose linear programming based algorithms capable of computing different state space realizations. By using the convexity of the feasible set of Metzler-type state transition matrices and results from the theory of non-negative polynomial systems, we provide algorithms to determine structurally different realization. Computational examples are provided to illustrate structural non-uniqueness of network-based LDSs.","PeriodicalId":42512,"journal":{"name":"Acta Cybernetica","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing Different Realizations of Linear Dynamical Systems with Embedding Eigenvalue Assignment\",\"authors\":\"Gergely Szlobodnyik, G. Szederkényi\",\"doi\":\"10.14232/actacyb.291870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate realizability of discrete time linear dynamical systems (LDSs) in fixed state space dimension. We examine whether there exist different Θ = (A,B,C,D) state space realizations of a given Markov parameter sequence Y with fixed B, C and D state space realization matrices. Full observation is assumed in terms of the invertibility of output mapping matrix C. We prove that the set of feasible state transition matrices associated to a Markov parameter sequence Y is convex, provided that the state space realization matrices B, C and D are known and fixed. Under the same conditions we also show that the set of feasible Metzler-type state transition matrices forms a convex subset. Regarding the set of Metzler-type state transition matrices we prove the existence of a structurally unique realization having maximal number of non-zero off-diagonal entries. Using an eigenvalue assignment procedure we propose linear programming based algorithms capable of computing different state space realizations. By using the convexity of the feasible set of Metzler-type state transition matrices and results from the theory of non-negative polynomial systems, we provide algorithms to determine structurally different realization. Computational examples are provided to illustrate structural non-uniqueness of network-based LDSs.\",\"PeriodicalId\":42512,\"journal\":{\"name\":\"Acta Cybernetica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Cybernetica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14232/actacyb.291870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybernetica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/actacyb.291870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了离散时间线性动力系统在固定状态空间维度上的可实现性。我们研究了给定马尔可夫参数序列Y在固定的B、C和D状态空间实现矩阵下是否存在不同的θ=(A、B、C、D)状态空间实现。充分观察是根据输出映射矩阵C的可逆性来假设的。我们证明了与马尔可夫参数序列Y相关的可行状态转移矩阵集是凸的,条件是状态空间实现矩阵B、C和D是已知和固定的。在相同条件下,我们还证明了一组可行的Metzler型状态转移矩阵形成了一个凸子集。关于Metzler型状态转移矩阵集,我们证明了具有最大非零非对角项的结构唯一实现的存在性。使用特征值分配过程,我们提出了能够计算不同状态空间实现的基于线性规划的算法。利用Metzler型状态转移矩阵可行集的凸性和非负多项式系统理论的结果,我们提供了确定结构不同实现的算法。提供了计算示例来说明基于网络的LDS的结构非唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Different Realizations of Linear Dynamical Systems with Embedding Eigenvalue Assignment
In this paper we investigate realizability of discrete time linear dynamical systems (LDSs) in fixed state space dimension. We examine whether there exist different Θ = (A,B,C,D) state space realizations of a given Markov parameter sequence Y with fixed B, C and D state space realization matrices. Full observation is assumed in terms of the invertibility of output mapping matrix C. We prove that the set of feasible state transition matrices associated to a Markov parameter sequence Y is convex, provided that the state space realization matrices B, C and D are known and fixed. Under the same conditions we also show that the set of feasible Metzler-type state transition matrices forms a convex subset. Regarding the set of Metzler-type state transition matrices we prove the existence of a structurally unique realization having maximal number of non-zero off-diagonal entries. Using an eigenvalue assignment procedure we propose linear programming based algorithms capable of computing different state space realizations. By using the convexity of the feasible set of Metzler-type state transition matrices and results from the theory of non-negative polynomial systems, we provide algorithms to determine structurally different realization. Computational examples are provided to illustrate structural non-uniqueness of network-based LDSs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Cybernetica
Acta Cybernetica COMPUTER SCIENCE, CYBERNETICS-
CiteScore
1.10
自引率
0.00%
发文量
17
期刊介绍: Acta Cybernetica publishes only original papers in the field of Computer Science. Manuscripts must be written in good English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信