微支架实现的多尺度粒子系统中的可扩展层次结构材料

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING
3D Printing and Additive Manufacturing Pub Date : 2024-06-18 eCollection Date: 2024-06-01 DOI:10.1089/3dp.2022.0313
Jiawei Ren, Shu Jian Chen, Yiping Qiao, Wei Wang
{"title":"微支架实现的多尺度粒子系统中的可扩展层次结构材料","authors":"Jiawei Ren, Shu Jian Chen, Yiping Qiao, Wei Wang","doi":"10.1089/3dp.2022.0313","DOIUrl":null,"url":null,"abstract":"<p><p>Structural hierarchy is the key to manufacturing multiscale particle-based composite materials. A novel manufacturing method was developed to generate scalable hierarchical structures in concrete. The new method used 3D-printed microscaffolds to interact with the multiscale particle packing in concrete, resulting in a structured lightweight composite material. The size of internal members can vary by more than two orders of magnitude, to adapt to different applications. Based on compression tests and microstructural investigation by optical microscope and quantitative nanomechanical mapping, we found that the new material is 63.93% more efficient in energy absorption capacity compared with traditional lightweight concrete. Our experimental trials also showed that introducing structural hierarchy can reduce the consumption of cementitious material in the system by up to 14% and significantly reduce the use of scaffolds. The method could be applied to a board spectrum of multiscale particle-based materials, such as dental cement and bone implant materials, to improve material performance and efficiency in medical and construction applications.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442189/pdf/","citationCount":"0","resultStr":"{\"title\":\"Scalable Hierarchically Structured Materials from a Multiscale Particle System Enabled by Microscaffolds.\",\"authors\":\"Jiawei Ren, Shu Jian Chen, Yiping Qiao, Wei Wang\",\"doi\":\"10.1089/3dp.2022.0313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structural hierarchy is the key to manufacturing multiscale particle-based composite materials. A novel manufacturing method was developed to generate scalable hierarchical structures in concrete. The new method used 3D-printed microscaffolds to interact with the multiscale particle packing in concrete, resulting in a structured lightweight composite material. The size of internal members can vary by more than two orders of magnitude, to adapt to different applications. Based on compression tests and microstructural investigation by optical microscope and quantitative nanomechanical mapping, we found that the new material is 63.93% more efficient in energy absorption capacity compared with traditional lightweight concrete. Our experimental trials also showed that introducing structural hierarchy can reduce the consumption of cementitious material in the system by up to 14% and significantly reduce the use of scaffolds. The method could be applied to a board spectrum of multiscale particle-based materials, such as dental cement and bone implant materials, to improve material performance and efficiency in medical and construction applications.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442189/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2022.0313\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0313","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

结构层次是制造多尺度颗粒复合材料的关键。为在混凝土中生成可扩展的分层结构,开发了一种新的制造方法。这种新方法利用三维打印的微型支架与混凝土中的多尺度颗粒填料相互作用,产生了一种结构化的轻质复合材料。内部构件的尺寸可变化两个数量级以上,以适应不同的应用。根据压缩试验以及光学显微镜和定量纳米力学图谱的微观结构研究,我们发现与传统轻质混凝土相比,新材料的能量吸收能力提高了 63.93%。我们的实验还表明,引入结构层次可使系统中的胶凝材料消耗量减少 14%,并显著减少脚手架的使用。该方法可应用于牙科水泥和骨植入材料等各种多尺度颗粒材料,以提高材料在医疗和建筑应用中的性能和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Hierarchically Structured Materials from a Multiscale Particle System Enabled by Microscaffolds.

Structural hierarchy is the key to manufacturing multiscale particle-based composite materials. A novel manufacturing method was developed to generate scalable hierarchical structures in concrete. The new method used 3D-printed microscaffolds to interact with the multiscale particle packing in concrete, resulting in a structured lightweight composite material. The size of internal members can vary by more than two orders of magnitude, to adapt to different applications. Based on compression tests and microstructural investigation by optical microscope and quantitative nanomechanical mapping, we found that the new material is 63.93% more efficient in energy absorption capacity compared with traditional lightweight concrete. Our experimental trials also showed that introducing structural hierarchy can reduce the consumption of cementitious material in the system by up to 14% and significantly reduce the use of scaffolds. The method could be applied to a board spectrum of multiscale particle-based materials, such as dental cement and bone implant materials, to improve material performance and efficiency in medical and construction applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信