氟化锂(LiF)型剂量计的热猝灭效应研究

E. Aşlar
{"title":"氟化锂(LiF)型剂量计的热猝灭效应研究","authors":"E. Aşlar","doi":"10.17776/csj.1226987","DOIUrl":null,"url":null,"abstract":"Thermal quenching is described as a decrease in luminescence efficiency with increasing measurement temperature. Luminescence intensity decreases with increasing heating rates in the presence of thermal quenching. In such a case, the heating rate to be used in the measurements becomes important. Lithium fluoride (LiF) type dosimeters have been widely used in radiation dosimetry for many years. In this study, thermal quenching effect was investigated for LiF:Mg,Ti (TLD-100) and LiF:Mg,Cu,P (TLD-100H), 6LiF:Mg,Ti(TLD-600) and 7LiF:Mg,Ti (TLD-700) at two different doses (10, 1000mGy) using 90Sr/90Y beta source. TLD-100, TLD-600 and TLD-700 showed different thermal quenching behaviors according to dose values, while TLD-100H had the same characteristics at both doses. On the other hand, other dosimeters showed thermal quenching based on the total area at 10mGy, while they did not show thermal quenching when ROI was used. Again, thermal quenching was not observed at 1000mGy for all dosimeters. In conclusion, it is recommended to use ROI or low heating rate during measurements at a low dose (in the order of mGy) for TLD-100, TLD-600 and TLD-700, while desired heating rate can be used at a high dose (Gy) for all dosimeters.","PeriodicalId":10906,"journal":{"name":"Cumhuriyet Science Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Thermal Quenching Effect for Lithium Fluoride (LiF) Type Dosimeters\",\"authors\":\"E. Aşlar\",\"doi\":\"10.17776/csj.1226987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal quenching is described as a decrease in luminescence efficiency with increasing measurement temperature. Luminescence intensity decreases with increasing heating rates in the presence of thermal quenching. In such a case, the heating rate to be used in the measurements becomes important. Lithium fluoride (LiF) type dosimeters have been widely used in radiation dosimetry for many years. In this study, thermal quenching effect was investigated for LiF:Mg,Ti (TLD-100) and LiF:Mg,Cu,P (TLD-100H), 6LiF:Mg,Ti(TLD-600) and 7LiF:Mg,Ti (TLD-700) at two different doses (10, 1000mGy) using 90Sr/90Y beta source. TLD-100, TLD-600 and TLD-700 showed different thermal quenching behaviors according to dose values, while TLD-100H had the same characteristics at both doses. On the other hand, other dosimeters showed thermal quenching based on the total area at 10mGy, while they did not show thermal quenching when ROI was used. Again, thermal quenching was not observed at 1000mGy for all dosimeters. In conclusion, it is recommended to use ROI or low heating rate during measurements at a low dose (in the order of mGy) for TLD-100, TLD-600 and TLD-700, while desired heating rate can be used at a high dose (Gy) for all dosimeters.\",\"PeriodicalId\":10906,\"journal\":{\"name\":\"Cumhuriyet Science Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cumhuriyet Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17776/csj.1226987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cumhuriyet Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17776/csj.1226987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

热猝灭被描述为发光效率随着测量温度的升高而降低。在存在热猝灭的情况下,发光强度随着加热速率的增加而降低。在这种情况下,测量中使用的加热速率变得重要。氟化锂(LiF)型剂量计已在辐射剂量测定中广泛应用多年。在本研究中,使用90Sr/90Yβ源研究了两种不同剂量(101000Gy)的LiF:Mg,Ti(TLD-100)和LiF:MgCu,P(TLD-100H)、6LiF:Mg,钛(TLD-600)和7LiF:Mg-Ti(TLD-700)的热猝灭效应。TLD-100、TLD-600和TLD-700根据剂量值表现出不同的热猝灭行为,而TLD-100H在两种剂量下具有相同的特性。另一方面,其他剂量计在10mGy时显示出基于总面积的热猝灭,而当使用ROI时,它们没有显示出热猝灭。同样,对于所有剂量计,在1000mGy下没有观察到热猝灭。总之,建议在TLD-100、TLD-600和TLD-700的低剂量(mGy量级)测量期间使用ROI或低加热速率,而所有剂量计都可以在高剂量(Gy)下使用所需的加热速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Thermal Quenching Effect for Lithium Fluoride (LiF) Type Dosimeters
Thermal quenching is described as a decrease in luminescence efficiency with increasing measurement temperature. Luminescence intensity decreases with increasing heating rates in the presence of thermal quenching. In such a case, the heating rate to be used in the measurements becomes important. Lithium fluoride (LiF) type dosimeters have been widely used in radiation dosimetry for many years. In this study, thermal quenching effect was investigated for LiF:Mg,Ti (TLD-100) and LiF:Mg,Cu,P (TLD-100H), 6LiF:Mg,Ti(TLD-600) and 7LiF:Mg,Ti (TLD-700) at two different doses (10, 1000mGy) using 90Sr/90Y beta source. TLD-100, TLD-600 and TLD-700 showed different thermal quenching behaviors according to dose values, while TLD-100H had the same characteristics at both doses. On the other hand, other dosimeters showed thermal quenching based on the total area at 10mGy, while they did not show thermal quenching when ROI was used. Again, thermal quenching was not observed at 1000mGy for all dosimeters. In conclusion, it is recommended to use ROI or low heating rate during measurements at a low dose (in the order of mGy) for TLD-100, TLD-600 and TLD-700, while desired heating rate can be used at a high dose (Gy) for all dosimeters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
51
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信