活体有髓神经纤维中Ranvier淋巴结的生理学研究

IF 1.1 Q4 CELL BIOLOGY
O. S. Sotnikov, S. V. Revenko
{"title":"活体有髓神经纤维中Ranvier淋巴结的生理学研究","authors":"O. S. Sotnikov,&nbsp;S. V. Revenko","doi":"10.1134/S1990747822040067","DOIUrl":null,"url":null,"abstract":"<div><div><h3>\n <b>Abstract</b>—</h3><p>A fixed histological preparation cannot reveal the dynamics of morphophysiological objects being merely a basis for hypothetic physiology. At the same time, intravital microscopy of mobile and changing structures can be considered as a branch of cell physiology. The present study focused on revealing the features of this chapter of neurophysiology in relation to nerve fibers. Importantly, the preparation of living neurons isolated by the method of Tasaki inevitably produces mechanical lesions in Ranvier node structure of unknown scale and importance. These lesions can be manifested by deformation or entire elimination of the cone-shaped myelinated regions of the node and/or fiber bulb, as well as by the changes of the nodal gap. Similar alterations can emerge in the intact fiber during a long-term survival in Ringer’s solution. Electron microscopy showed that in hypotonic solutions, swelling and increase in the volume of neuroplasm in the paranodal loops were accompanied by its expansion into the axoplasmic territory in the cone during narrowing of the axon. These processes were reversible, and they probably reflected a novel form of metabolic transmembrane neuron–glial exchange of glucose, amino acids, and other low-molecular weight compounds leading to the formation of integrated cytoplasm of the nerve fiber. The loss of clear boundary of the myelinated cones of the node and/or fiber bulb depended on a large-scale exfoliation of individual main dense lines of Robertson and on flooding the series of paranodal loops. Hypertonic (2 M) solution of urea, which cannot provoke swelling of the cytoplasm but can denature the proteins, also induced similar alterations in the node of Ranvier. Consequently, the described changes in the nodes were not associated with the phenomenon of external osmotic changes, but with the influence of nonspecific physical alterations in conformation of axoplasmic proteins. The voltage clamp experiments with recording of nodal ionic currents demonstrated the correspondence of structural alterations to electrophysiological changes in sodium, potassium, and leakage conductance. The experiments with sodium channel modifier batrachotoxin revealed no structural alterations in Ranvier nodes during 1 h. The present and reviewed data indicate that the nodal changes probably result not from the structural alterations of axolemmal proteins, but from the conformational rearrangements of the axoplasmic ones.</p></div></div>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Physiology of Ranvier Nodes in Living Myelinated Nerve Fibers\",\"authors\":\"O. S. Sotnikov,&nbsp;S. V. Revenko\",\"doi\":\"10.1134/S1990747822040067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><h3>\\n <b>Abstract</b>—</h3><p>A fixed histological preparation cannot reveal the dynamics of morphophysiological objects being merely a basis for hypothetic physiology. At the same time, intravital microscopy of mobile and changing structures can be considered as a branch of cell physiology. The present study focused on revealing the features of this chapter of neurophysiology in relation to nerve fibers. Importantly, the preparation of living neurons isolated by the method of Tasaki inevitably produces mechanical lesions in Ranvier node structure of unknown scale and importance. These lesions can be manifested by deformation or entire elimination of the cone-shaped myelinated regions of the node and/or fiber bulb, as well as by the changes of the nodal gap. Similar alterations can emerge in the intact fiber during a long-term survival in Ringer’s solution. Electron microscopy showed that in hypotonic solutions, swelling and increase in the volume of neuroplasm in the paranodal loops were accompanied by its expansion into the axoplasmic territory in the cone during narrowing of the axon. These processes were reversible, and they probably reflected a novel form of metabolic transmembrane neuron–glial exchange of glucose, amino acids, and other low-molecular weight compounds leading to the formation of integrated cytoplasm of the nerve fiber. The loss of clear boundary of the myelinated cones of the node and/or fiber bulb depended on a large-scale exfoliation of individual main dense lines of Robertson and on flooding the series of paranodal loops. Hypertonic (2 M) solution of urea, which cannot provoke swelling of the cytoplasm but can denature the proteins, also induced similar alterations in the node of Ranvier. Consequently, the described changes in the nodes were not associated with the phenomenon of external osmotic changes, but with the influence of nonspecific physical alterations in conformation of axoplasmic proteins. The voltage clamp experiments with recording of nodal ionic currents demonstrated the correspondence of structural alterations to electrophysiological changes in sodium, potassium, and leakage conductance. The experiments with sodium channel modifier batrachotoxin revealed no structural alterations in Ranvier nodes during 1 h. The present and reviewed data indicate that the nodal changes probably result not from the structural alterations of axolemmal proteins, but from the conformational rearrangements of the axoplasmic ones.</p></div></div>\",\"PeriodicalId\":484,\"journal\":{\"name\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990747822040067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747822040067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

一个固定的组织学准备不能揭示形态生理对象的动态,仅仅是假设生理学的基础。同时,活体显微术观察移动和变化的结构可以被认为是细胞生理学的一个分支。本研究的重点是揭示与神经纤维有关的神经生理学这一章的特征。重要的是,通过Tasaki方法分离的活神经元的制备不可避免地会在Ranvier节点结构中产生未知规模和重要性的机械损伤。这些病变可表现为淋巴结和/或纤维球的锥形髓鞘区变形或完全消失,以及淋巴结间隙的改变。在林格氏溶液中长期存活期间,完整的纤维也会出现类似的改变。电镜观察显示,在低渗溶液中,在轴突变窄过程中,副神经袢内的神经质肿胀和体积增加,并向锥体内的轴浆区扩张。这些过程是可逆的,它们可能反映了葡萄糖、氨基酸和其他低分子量化合物的代谢跨膜神经元-胶质交换的一种新形式,导致神经纤维整合细胞质的形成。淋巴结和/或纤维球的有髓细胞锥体的清晰边界的丧失取决于单个主要密集的Robertson线的大规模剥落和淹没了一系列的副神经节袢。高渗(2 M)尿素溶液不会引起细胞质肿胀,但会使蛋白质变性,也会引起Ranvier结的类似改变。因此,所描述的淋巴结变化与外渗透变化现象无关,而是与轴浆蛋白构象的非特异性物理改变的影响有关。记录节点离子电流的电压钳实验证明了结构改变与钠、钾和漏电导的电生理变化的对应关系。钠离子通道调节剂batrachotoxin的实验显示,1 h内Ranvier淋巴结的结构未发生改变。目前的数据和回顾的数据表明,淋巴结的变化可能不是由轴质蛋白的结构改变引起的,而是由轴质蛋白的构象重排引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Physiology of Ranvier Nodes in Living Myelinated Nerve Fibers

Physiology of Ranvier Nodes in Living Myelinated Nerve Fibers

Abstract

A fixed histological preparation cannot reveal the dynamics of morphophysiological objects being merely a basis for hypothetic physiology. At the same time, intravital microscopy of mobile and changing structures can be considered as a branch of cell physiology. The present study focused on revealing the features of this chapter of neurophysiology in relation to nerve fibers. Importantly, the preparation of living neurons isolated by the method of Tasaki inevitably produces mechanical lesions in Ranvier node structure of unknown scale and importance. These lesions can be manifested by deformation or entire elimination of the cone-shaped myelinated regions of the node and/or fiber bulb, as well as by the changes of the nodal gap. Similar alterations can emerge in the intact fiber during a long-term survival in Ringer’s solution. Electron microscopy showed that in hypotonic solutions, swelling and increase in the volume of neuroplasm in the paranodal loops were accompanied by its expansion into the axoplasmic territory in the cone during narrowing of the axon. These processes were reversible, and they probably reflected a novel form of metabolic transmembrane neuron–glial exchange of glucose, amino acids, and other low-molecular weight compounds leading to the formation of integrated cytoplasm of the nerve fiber. The loss of clear boundary of the myelinated cones of the node and/or fiber bulb depended on a large-scale exfoliation of individual main dense lines of Robertson and on flooding the series of paranodal loops. Hypertonic (2 M) solution of urea, which cannot provoke swelling of the cytoplasm but can denature the proteins, also induced similar alterations in the node of Ranvier. Consequently, the described changes in the nodes were not associated with the phenomenon of external osmotic changes, but with the influence of nonspecific physical alterations in conformation of axoplasmic proteins. The voltage clamp experiments with recording of nodal ionic currents demonstrated the correspondence of structural alterations to electrophysiological changes in sodium, potassium, and leakage conductance. The experiments with sodium channel modifier batrachotoxin revealed no structural alterations in Ranvier nodes during 1 h. The present and reviewed data indicate that the nodal changes probably result not from the structural alterations of axolemmal proteins, but from the conformational rearrangements of the axoplasmic ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
28
期刊介绍: Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology   is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信