{"title":"不同新癸酸锡和钙锌热稳定剂对PVC热稳定性的影响","authors":"Xiang Wang, Chao Di, Tingwei Wang","doi":"10.1515/epoly-2023-0029","DOIUrl":null,"url":null,"abstract":"Abstract Heat stabilizers are crucial additives for enhancing the thermal stability of polyvinyl chloride (PVC) during processing. Among the various heat stabilizers available, organic tin compounds have shown remarkable effectiveness. In this study, we investigated the use of dimethyltin dineodecanoate (DMTDN), dibutyltin dineodecanoate (DBTDN), and dioctyltin dineodecanoate (DOTDN) as heat stabilizers for PVC. These compounds were combined with calcium stearate (CaSt2) and zinc stearate (ZnSt2) to improve the thermal stability of PVC materials. The results demonstrated that the thermal stabilization effects of the three tin neodecanoates, when used as standalone heat stabilizers, followed the order: DOTDN > DBTDN > DMTDN. Notably, the thermal stability and lubricity of the three-component heat stabilizer (MTN5-C4Z1, BTN5-C4Z1, and OTN5-C4Z1, respectively), which consisted of the three types of tin neodecanoate, CaSt2, and ZnSt2 in a ratio of 5:4:1, outperformed the use of tin neodecanoate alone. This study offered potential formulations to reduce the application cost of tin neodecanoate as a PVC heat stabilizer.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of different tin neodecanoate and calcium–zinc heat stabilizers on the thermal stability of PVC\",\"authors\":\"Xiang Wang, Chao Di, Tingwei Wang\",\"doi\":\"10.1515/epoly-2023-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Heat stabilizers are crucial additives for enhancing the thermal stability of polyvinyl chloride (PVC) during processing. Among the various heat stabilizers available, organic tin compounds have shown remarkable effectiveness. In this study, we investigated the use of dimethyltin dineodecanoate (DMTDN), dibutyltin dineodecanoate (DBTDN), and dioctyltin dineodecanoate (DOTDN) as heat stabilizers for PVC. These compounds were combined with calcium stearate (CaSt2) and zinc stearate (ZnSt2) to improve the thermal stability of PVC materials. The results demonstrated that the thermal stabilization effects of the three tin neodecanoates, when used as standalone heat stabilizers, followed the order: DOTDN > DBTDN > DMTDN. Notably, the thermal stability and lubricity of the three-component heat stabilizer (MTN5-C4Z1, BTN5-C4Z1, and OTN5-C4Z1, respectively), which consisted of the three types of tin neodecanoate, CaSt2, and ZnSt2 in a ratio of 5:4:1, outperformed the use of tin neodecanoate alone. This study offered potential formulations to reduce the application cost of tin neodecanoate as a PVC heat stabilizer.\",\"PeriodicalId\":11806,\"journal\":{\"name\":\"e-Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/epoly-2023-0029\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0029","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Effect of different tin neodecanoate and calcium–zinc heat stabilizers on the thermal stability of PVC
Abstract Heat stabilizers are crucial additives for enhancing the thermal stability of polyvinyl chloride (PVC) during processing. Among the various heat stabilizers available, organic tin compounds have shown remarkable effectiveness. In this study, we investigated the use of dimethyltin dineodecanoate (DMTDN), dibutyltin dineodecanoate (DBTDN), and dioctyltin dineodecanoate (DOTDN) as heat stabilizers for PVC. These compounds were combined with calcium stearate (CaSt2) and zinc stearate (ZnSt2) to improve the thermal stability of PVC materials. The results demonstrated that the thermal stabilization effects of the three tin neodecanoates, when used as standalone heat stabilizers, followed the order: DOTDN > DBTDN > DMTDN. Notably, the thermal stability and lubricity of the three-component heat stabilizer (MTN5-C4Z1, BTN5-C4Z1, and OTN5-C4Z1, respectively), which consisted of the three types of tin neodecanoate, CaSt2, and ZnSt2 in a ratio of 5:4:1, outperformed the use of tin neodecanoate alone. This study offered potential formulations to reduce the application cost of tin neodecanoate as a PVC heat stabilizer.
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.