{"title":"纳米复合材料对二氧化碳的有效检测:环境与能源技术","authors":"Tawfik A. Saleh , Ganjar Fadillah","doi":"10.1016/j.teac.2021.e00142","DOIUrl":null,"url":null,"abstract":"<div><p>Nanocomposite materials have received much attention from scientists and engineers interested in the detection and photoreduction of CO<sub>2</sub><span> compounds. Their interest is due in large part to the unique properties of these materials, including their high degree of photoactivity, thermal stability, high surface area, and malleability. In the present review, we focus on several nanocomposite types used for the detection and photochemical reduction of CO</span><sub>2</sub>: titania-based nanocomposites, chalcogenide-based nanocomposites, LDHs-based nanocomposites, and MOFs-based nanocomposites. More specifically, trends in green synthesis nanocomposites, methods for detecting CO<sub>2</sub> compounds, and the photoreduction of those compounds are summarized in this paper. Several modified approaches to nanocomposite materials have been discussed to achieve optimum results. Generally, we find that the presence of functional active groups, doping metal, and other semiconductor materials act as catalysts, significantly enhancing the photoreduction properties of nano-materials. Moreover, we will also discuss additional challenges, especially in regard to large-scale industrial applications. In our discussion, we will highlight the use of nanocomposite-based materials in the detection and photoreduction of CO<sub>2</sub>. It is hoped that our findings will serve as a reference and inspiration for academic researchers and industrial professionals.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"32 ","pages":"Article e00142"},"PeriodicalIF":11.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.teac.2021.e00142","citationCount":"16","resultStr":"{\"title\":\"Efficient detection of CO2 by nanocomposites: Environmental and energy technologies\",\"authors\":\"Tawfik A. Saleh , Ganjar Fadillah\",\"doi\":\"10.1016/j.teac.2021.e00142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanocomposite materials have received much attention from scientists and engineers interested in the detection and photoreduction of CO<sub>2</sub><span> compounds. Their interest is due in large part to the unique properties of these materials, including their high degree of photoactivity, thermal stability, high surface area, and malleability. In the present review, we focus on several nanocomposite types used for the detection and photochemical reduction of CO</span><sub>2</sub>: titania-based nanocomposites, chalcogenide-based nanocomposites, LDHs-based nanocomposites, and MOFs-based nanocomposites. More specifically, trends in green synthesis nanocomposites, methods for detecting CO<sub>2</sub> compounds, and the photoreduction of those compounds are summarized in this paper. Several modified approaches to nanocomposite materials have been discussed to achieve optimum results. Generally, we find that the presence of functional active groups, doping metal, and other semiconductor materials act as catalysts, significantly enhancing the photoreduction properties of nano-materials. Moreover, we will also discuss additional challenges, especially in regard to large-scale industrial applications. In our discussion, we will highlight the use of nanocomposite-based materials in the detection and photoreduction of CO<sub>2</sub>. It is hoped that our findings will serve as a reference and inspiration for academic researchers and industrial professionals.</p></div>\",\"PeriodicalId\":56032,\"journal\":{\"name\":\"Trends in Environmental Analytical Chemistry\",\"volume\":\"32 \",\"pages\":\"Article e00142\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.teac.2021.e00142\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Environmental Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214158821000295\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158821000295","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Efficient detection of CO2 by nanocomposites: Environmental and energy technologies
Nanocomposite materials have received much attention from scientists and engineers interested in the detection and photoreduction of CO2 compounds. Their interest is due in large part to the unique properties of these materials, including their high degree of photoactivity, thermal stability, high surface area, and malleability. In the present review, we focus on several nanocomposite types used for the detection and photochemical reduction of CO2: titania-based nanocomposites, chalcogenide-based nanocomposites, LDHs-based nanocomposites, and MOFs-based nanocomposites. More specifically, trends in green synthesis nanocomposites, methods for detecting CO2 compounds, and the photoreduction of those compounds are summarized in this paper. Several modified approaches to nanocomposite materials have been discussed to achieve optimum results. Generally, we find that the presence of functional active groups, doping metal, and other semiconductor materials act as catalysts, significantly enhancing the photoreduction properties of nano-materials. Moreover, we will also discuss additional challenges, especially in regard to large-scale industrial applications. In our discussion, we will highlight the use of nanocomposite-based materials in the detection and photoreduction of CO2. It is hoped that our findings will serve as a reference and inspiration for academic researchers and industrial professionals.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.