{"title":"铬和镍同时植物毒性和致突变性试验","authors":"A. Fargašová, Jana Lištiaková","doi":"10.36547/nbc.1156","DOIUrl":null,"url":null,"abstract":"For genotoxicity study simultaneous phytotoxicity and mutagenicity assay with Vicia sativa L. var. Klára was used. For phytotoxicity the following rank orders of growth inhibition can be arranged: for roots: Ni(II) > Cr(VI) > Cr(III); for shoots: Ni(II) > Cr(VI) ≥ Cr (III). For mutagenicity assay root tips of V. sativa were used and chromosome aberrations were determined at least in 500-anatelophases. All tested metals exerted in V. sativa a significant increase of chromosomal aberration rate in applied concentrations. Maximum of aberrations invoked Cr(VI) and the rank order of aberrations fall was: Cr(VI) > Ni(II) > Cr(III). Genotoxic effects of metals were determined by analysis of micronuclei frequency in the pollen tetrads of Tradescantia plants. None of tested metal significantly stimulated micronuclei frequency and genotoxic effect was decreased in order: Cr(VI) ≥ Ni(II) > Cr(III).","PeriodicalId":19210,"journal":{"name":"Nova Biotechnologica et Chimica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cr and Ni simultaneous phytotoxicity and mutagenicity assay\",\"authors\":\"A. Fargašová, Jana Lištiaková\",\"doi\":\"10.36547/nbc.1156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For genotoxicity study simultaneous phytotoxicity and mutagenicity assay with Vicia sativa L. var. Klára was used. For phytotoxicity the following rank orders of growth inhibition can be arranged: for roots: Ni(II) > Cr(VI) > Cr(III); for shoots: Ni(II) > Cr(VI) ≥ Cr (III). For mutagenicity assay root tips of V. sativa were used and chromosome aberrations were determined at least in 500-anatelophases. All tested metals exerted in V. sativa a significant increase of chromosomal aberration rate in applied concentrations. Maximum of aberrations invoked Cr(VI) and the rank order of aberrations fall was: Cr(VI) > Ni(II) > Cr(III). Genotoxic effects of metals were determined by analysis of micronuclei frequency in the pollen tetrads of Tradescantia plants. None of tested metal significantly stimulated micronuclei frequency and genotoxic effect was decreased in order: Cr(VI) ≥ Ni(II) > Cr(III).\",\"PeriodicalId\":19210,\"journal\":{\"name\":\"Nova Biotechnologica et Chimica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nova Biotechnologica et Chimica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36547/nbc.1156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nova Biotechnologica et Chimica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36547/nbc.1156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Cr and Ni simultaneous phytotoxicity and mutagenicity assay
For genotoxicity study simultaneous phytotoxicity and mutagenicity assay with Vicia sativa L. var. Klára was used. For phytotoxicity the following rank orders of growth inhibition can be arranged: for roots: Ni(II) > Cr(VI) > Cr(III); for shoots: Ni(II) > Cr(VI) ≥ Cr (III). For mutagenicity assay root tips of V. sativa were used and chromosome aberrations were determined at least in 500-anatelophases. All tested metals exerted in V. sativa a significant increase of chromosomal aberration rate in applied concentrations. Maximum of aberrations invoked Cr(VI) and the rank order of aberrations fall was: Cr(VI) > Ni(II) > Cr(III). Genotoxic effects of metals were determined by analysis of micronuclei frequency in the pollen tetrads of Tradescantia plants. None of tested metal significantly stimulated micronuclei frequency and genotoxic effect was decreased in order: Cr(VI) ≥ Ni(II) > Cr(III).