基于热力学计算的液相外延锗层生长的最佳制度

IF 0.9 Q4 THERMODYNAMICS
Alijon Razzokov, Khushnudbek Eshchanov
{"title":"基于热力学计算的液相外延锗层生长的最佳制度","authors":"Alijon Razzokov, Khushnudbek Eshchanov","doi":"10.5541/ijot.1102511","DOIUrl":null,"url":null,"abstract":"Thermodynamic calculations were performed to determine the optimal conditions for the growth of germanium epitaxial layers from a Ge-Sn solution (system) to a germanium substrate. The determination of the optimal conditions was based on the change in the Gibbs energy values of the system during the crystallization process and the size of the crystal-forming nanoclusters. Based on the results obtained, we determined the optimal conditions for obtaining low-dislocation, crystalline perfect germanium epitaxial layers from a liquid tin solution, and recommended starting the crystallization process at 923 K and finishing at 800 K. When the temperature drops below 800 K, the formation of Ge1-xSnx epitaxial layers from the Ge-Sn solution was observed.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Regime for Growth of Epitaxial Germanium Layers from the Liquid Phase Based on Thermodynamic Calculations\",\"authors\":\"Alijon Razzokov, Khushnudbek Eshchanov\",\"doi\":\"10.5541/ijot.1102511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermodynamic calculations were performed to determine the optimal conditions for the growth of germanium epitaxial layers from a Ge-Sn solution (system) to a germanium substrate. The determination of the optimal conditions was based on the change in the Gibbs energy values of the system during the crystallization process and the size of the crystal-forming nanoclusters. Based on the results obtained, we determined the optimal conditions for obtaining low-dislocation, crystalline perfect germanium epitaxial layers from a liquid tin solution, and recommended starting the crystallization process at 923 K and finishing at 800 K. When the temperature drops below 800 K, the formation of Ge1-xSnx epitaxial layers from the Ge-Sn solution was observed.\",\"PeriodicalId\":14438,\"journal\":{\"name\":\"International Journal of Thermodynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5541/ijot.1102511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5541/ijot.1102511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

进行热力学计算以确定从Ge-Sn溶液(系统)到锗衬底生长锗外延层的最佳条件。最佳条件的确定是基于结晶过程中系统的吉布斯能值的变化和形成纳米团簇的晶体的尺寸。根据所得结果,我们确定了从液态锡溶液中获得低位错、结晶完美的锗外延层的最佳条件,并建议在923K开始结晶过程,在800K结束。当温度降至800K以下时,观察到从Ge-Sn溶液中形成Ge1-xSnx外延层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Regime for Growth of Epitaxial Germanium Layers from the Liquid Phase Based on Thermodynamic Calculations
Thermodynamic calculations were performed to determine the optimal conditions for the growth of germanium epitaxial layers from a Ge-Sn solution (system) to a germanium substrate. The determination of the optimal conditions was based on the change in the Gibbs energy values of the system during the crystallization process and the size of the crystal-forming nanoclusters. Based on the results obtained, we determined the optimal conditions for obtaining low-dislocation, crystalline perfect germanium epitaxial layers from a liquid tin solution, and recommended starting the crystallization process at 923 K and finishing at 800 K. When the temperature drops below 800 K, the formation of Ge1-xSnx epitaxial layers from the Ge-Sn solution was observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
35
期刊介绍: The purpose and scope of the International Journal of Thermodynamics is · to provide a forum for the publication of original theoretical and applied work in the field of thermodynamics as it relates to systems, states, processes, and both non-equilibrium and equilibrium phenomena at all temporal and spatial scales. · to provide a multidisciplinary and international platform for the dissemination to academia and industry of both scientific and engineering contributions, which touch upon a broad class of disciplines that are foundationally linked to thermodynamics and the methods and analyses derived there from. · to assess how both the first and particularly the second laws of thermodynamics touch upon these disciplines. · to highlight innovative & pioneer research in the field of thermodynamics in the following subjects (but not limited to the following, novel research in new areas are strongly suggested): o Entropy in thermodynamics and information theory. o Thermodynamics in process intensification. o Biothermodynamics (topics such as self-organization far from equilibrium etc.) o Thermodynamics of nonadditive systems. o Nonequilibrium thermal complex systems. o Sustainable design and thermodynamics. o Engineering thermodynamics. o Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信