咪唑功能化约束磷化钼实现CO2高效电催化转化为乙醇

IF 21.1 1区 化学 Q1 CHEMISTRY, PHYSICAL
Mohammadreza Esmaeilirad , Alireza Kondori , Nannan Shan , Mahmoud Tamadoni Saray , Sreya Sarkar , Ahmad M. Harzandi , Constantine M. Megaridis , Reza Shahbazian-Yassar , Larry A. Curtiss , Carlo U. Segre , Mohammad Asadi
{"title":"咪唑功能化约束磷化钼实现CO2高效电催化转化为乙醇","authors":"Mohammadreza Esmaeilirad ,&nbsp;Alireza Kondori ,&nbsp;Nannan Shan ,&nbsp;Mahmoud Tamadoni Saray ,&nbsp;Sreya Sarkar ,&nbsp;Ahmad M. Harzandi ,&nbsp;Constantine M. Megaridis ,&nbsp;Reza Shahbazian-Yassar ,&nbsp;Larry A. Curtiss ,&nbsp;Carlo U. Segre ,&nbsp;Mohammad Asadi","doi":"10.1016/j.apcatb.2022.121681","DOIUrl":null,"url":null,"abstract":"<div><p><span>An effective electrochemical carbon dioxide reduction reaction (eCO</span><sub>2</sub><span>RR) requires the discovery of a catalytic system that is highly active and selective for multi-carbon products together with superior CO</span><sub>2</sub><span> diffusion at a catalyst layer to minimize the reduction barriers. Here, we found a catalytic system that uses molybdenum phosphide (MoP) nanoparticles<span> covered by imidazolium-functionalized ionomer (Im) that promotes CO</span></span><sub>2</sub> diffusion at the catalyst layer toward the catalyst surface, where CO<sub>2</sub> is reduced to ethanol (C<sub>2</sub>H<sub>5</sub>OH). The electrochemical results with the MoP-Im co-catalyst show a C<sub>2</sub>H<sub>5</sub>OH production Faradaic efficiency and a cathodic energy efficiency of 77.4% and 63.3%, respectively, at a potential as low as − 200 mV <em>vs.</em> RHE. The electrochemical experiments along with our physicochemical characterizations indicate that the Im improves CO<sub>2</sub> diffusion and balances water content resulting in a higher CO<sub>2</sub>-to-water ratio at the catalyst layer and fine-tunes the electronic properties of Mo atoms at the MoP surface. <em>In-situ</em> Raman spectroscopy reveals that a high number of adsorbed *CO intermediates on the surface and a higher binding strength of *CO intermediates on the Mo surface sites in the presence of imidazolium molecules are the main reasons for a superior C-C coupling and thereby the improved C<sub>2</sub>H<sub>5</sub>OH formation.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"317 ","pages":"Article 121681"},"PeriodicalIF":21.1000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient electrocatalytic conversion of CO2 to ethanol enabled by imidazolium-functionalized ionomer confined molybdenum phosphide\",\"authors\":\"Mohammadreza Esmaeilirad ,&nbsp;Alireza Kondori ,&nbsp;Nannan Shan ,&nbsp;Mahmoud Tamadoni Saray ,&nbsp;Sreya Sarkar ,&nbsp;Ahmad M. Harzandi ,&nbsp;Constantine M. Megaridis ,&nbsp;Reza Shahbazian-Yassar ,&nbsp;Larry A. Curtiss ,&nbsp;Carlo U. Segre ,&nbsp;Mohammad Asadi\",\"doi\":\"10.1016/j.apcatb.2022.121681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>An effective electrochemical carbon dioxide reduction reaction (eCO</span><sub>2</sub><span>RR) requires the discovery of a catalytic system that is highly active and selective for multi-carbon products together with superior CO</span><sub>2</sub><span> diffusion at a catalyst layer to minimize the reduction barriers. Here, we found a catalytic system that uses molybdenum phosphide (MoP) nanoparticles<span> covered by imidazolium-functionalized ionomer (Im) that promotes CO</span></span><sub>2</sub> diffusion at the catalyst layer toward the catalyst surface, where CO<sub>2</sub> is reduced to ethanol (C<sub>2</sub>H<sub>5</sub>OH). The electrochemical results with the MoP-Im co-catalyst show a C<sub>2</sub>H<sub>5</sub>OH production Faradaic efficiency and a cathodic energy efficiency of 77.4% and 63.3%, respectively, at a potential as low as − 200 mV <em>vs.</em> RHE. The electrochemical experiments along with our physicochemical characterizations indicate that the Im improves CO<sub>2</sub> diffusion and balances water content resulting in a higher CO<sub>2</sub>-to-water ratio at the catalyst layer and fine-tunes the electronic properties of Mo atoms at the MoP surface. <em>In-situ</em> Raman spectroscopy reveals that a high number of adsorbed *CO intermediates on the surface and a higher binding strength of *CO intermediates on the Mo surface sites in the presence of imidazolium molecules are the main reasons for a superior C-C coupling and thereby the improved C<sub>2</sub>H<sub>5</sub>OH formation.</p></div>\",\"PeriodicalId\":244,\"journal\":{\"name\":\"Applied Catalysis B: Environmental\",\"volume\":\"317 \",\"pages\":\"Article 121681\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environmental\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926337322006221\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337322006221","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

摘要

有效的电化学二氧化碳还原反应(eCO2RR)需要发现一种对多碳产物具有高活性和选择性的催化体系,并在催化剂层上具有优异的二氧化碳扩散能力,以最大限度地减少还原障碍。在这里,我们发现了一个催化系统,该系统使用咪唑功能化离聚物(Im)覆盖的磷化钼(MoP)纳米颗粒,促进二氧化碳在催化剂层向催化剂表面扩散,在那里二氧化碳被还原为乙醇(C2H5OH)。MoP-Im共催化剂的电化学结果表明,在低至- 200 mV的电位下,C2H5OH的法拉第效率和阴极能量效率分别为77.4%和63.3%。电化学实验以及我们的物理化学表征表明,Im改善了CO2扩散,平衡了水含量,导致催化剂层的CO2与水比更高,并微调了MoP表面Mo原子的电子性质。原位拉曼光谱分析表明,在咪唑分子存在下,表面吸附了大量的*CO中间体,并且*CO中间体在Mo表面位点上的结合强度较高,这是C-C偶联性较好的主要原因,从而促进了C2H5OH的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient electrocatalytic conversion of CO2 to ethanol enabled by imidazolium-functionalized ionomer confined molybdenum phosphide

An effective electrochemical carbon dioxide reduction reaction (eCO2RR) requires the discovery of a catalytic system that is highly active and selective for multi-carbon products together with superior CO2 diffusion at a catalyst layer to minimize the reduction barriers. Here, we found a catalytic system that uses molybdenum phosphide (MoP) nanoparticles covered by imidazolium-functionalized ionomer (Im) that promotes CO2 diffusion at the catalyst layer toward the catalyst surface, where CO2 is reduced to ethanol (C2H5OH). The electrochemical results with the MoP-Im co-catalyst show a C2H5OH production Faradaic efficiency and a cathodic energy efficiency of 77.4% and 63.3%, respectively, at a potential as low as − 200 mV vs. RHE. The electrochemical experiments along with our physicochemical characterizations indicate that the Im improves CO2 diffusion and balances water content resulting in a higher CO2-to-water ratio at the catalyst layer and fine-tunes the electronic properties of Mo atoms at the MoP surface. In-situ Raman spectroscopy reveals that a high number of adsorbed *CO intermediates on the surface and a higher binding strength of *CO intermediates on the Mo surface sites in the presence of imidazolium molecules are the main reasons for a superior C-C coupling and thereby the improved C2H5OH formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Catalysis B: Environmental
Applied Catalysis B: Environmental 环境科学-工程:化工
CiteScore
38.60
自引率
6.30%
发文量
1117
审稿时长
24 days
期刊介绍: Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including: 1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources. 2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes. 3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts. 4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells. 5.Catalytic reactions that convert wastes into useful products. 6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts. 7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems. 8.New catalytic combustion technologies and catalysts. 9.New catalytic non-enzymatic transformations of biomass components. The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信