微生物燃料电池在去除石油碳氢化合物污染物方面的应用综述

IF 4.5 3区 工程技术 Q1 WATER RESOURCES
Pegah Fatehbasharzad , Samira Aliasghari , Ipak Shaterzadeh Tabrizi , Javed Ali Khan , Grzegorz Boczkaj
{"title":"微生物燃料电池在去除石油碳氢化合物污染物方面的应用综述","authors":"Pegah Fatehbasharzad ,&nbsp;Samira Aliasghari ,&nbsp;Ipak Shaterzadeh Tabrizi ,&nbsp;Javed Ali Khan ,&nbsp;Grzegorz Boczkaj","doi":"10.1016/j.wri.2022.100178","DOIUrl":null,"url":null,"abstract":"<div><p>Bioelectrochemical systems (BESs) are considered as the potential approaches to remediate the environments contaminated by hydrocarbons. This review addresses the application of BESs particularly microbial fuel cells (MFCs) in degradation of petroleum hydrocarbons, including BTEXs, from soil, water, wastewater and sediments. Details on reactor design and critical issues are discussed. Aspects on electrodes, redox mediators and membranes are evaluated, including economic feasibility. The microbial community is considered in detail. It can be concluded, that comparing to classic configurations, single-chamber air-cathode reactors are more cost-effective. Secondly, systems based on small-scale units are recommended for future developments.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"28 ","pages":"Article 100178"},"PeriodicalIF":4.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212371722000087/pdfft?md5=53dd12e49c1a0f82142a4a11bc6a3513&pid=1-s2.0-S2212371722000087-main.pdf","citationCount":"9","resultStr":"{\"title\":\"Microbial fuel cell applications for removal of petroleum hydrocarbon pollutants: A review\",\"authors\":\"Pegah Fatehbasharzad ,&nbsp;Samira Aliasghari ,&nbsp;Ipak Shaterzadeh Tabrizi ,&nbsp;Javed Ali Khan ,&nbsp;Grzegorz Boczkaj\",\"doi\":\"10.1016/j.wri.2022.100178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bioelectrochemical systems (BESs) are considered as the potential approaches to remediate the environments contaminated by hydrocarbons. This review addresses the application of BESs particularly microbial fuel cells (MFCs) in degradation of petroleum hydrocarbons, including BTEXs, from soil, water, wastewater and sediments. Details on reactor design and critical issues are discussed. Aspects on electrodes, redox mediators and membranes are evaluated, including economic feasibility. The microbial community is considered in detail. It can be concluded, that comparing to classic configurations, single-chamber air-cathode reactors are more cost-effective. Secondly, systems based on small-scale units are recommended for future developments.</p></div>\",\"PeriodicalId\":23714,\"journal\":{\"name\":\"Water Resources and Industry\",\"volume\":\"28 \",\"pages\":\"Article 100178\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212371722000087/pdfft?md5=53dd12e49c1a0f82142a4a11bc6a3513&pid=1-s2.0-S2212371722000087-main.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources and Industry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212371722000087\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212371722000087","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 9

摘要

生物电化学系统(BESs)被认为是修复碳氢化合物污染环境的潜在途径。本文综述了生物燃料电池(BESs)特别是微生物燃料电池(mfc)在降解土壤、水、废水和沉积物中的石油烃(包括btex)方面的应用。讨论了反应堆设计的细节和关键问题。在电极、氧化还原介质和膜方面进行了评估,包括经济可行性。详细讨论了微生物群落。可以得出结论,与经典配置相比,单室空气阴极反应器具有更高的成本效益。其次,建议未来发展以小规模单位为基础的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microbial fuel cell applications for removal of petroleum hydrocarbon pollutants: A review

Microbial fuel cell applications for removal of petroleum hydrocarbon pollutants: A review

Bioelectrochemical systems (BESs) are considered as the potential approaches to remediate the environments contaminated by hydrocarbons. This review addresses the application of BESs particularly microbial fuel cells (MFCs) in degradation of petroleum hydrocarbons, including BTEXs, from soil, water, wastewater and sediments. Details on reactor design and critical issues are discussed. Aspects on electrodes, redox mediators and membranes are evaluated, including economic feasibility. The microbial community is considered in detail. It can be concluded, that comparing to classic configurations, single-chamber air-cathode reactors are more cost-effective. Secondly, systems based on small-scale units are recommended for future developments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources and Industry
Water Resources and Industry Social Sciences-Geography, Planning and Development
CiteScore
8.10
自引率
5.90%
发文量
23
审稿时长
75 days
期刊介绍: Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信