F. Hasan, Mohamed A. Abdoon, Rania Saadeh, Mohammed Berir, Ahmad Qazza
{"title":"用Allen-Cahn方程的精确解实现随机分数阶的新观点","authors":"F. Hasan, Mohamed A. Abdoon, Rania Saadeh, Mohammed Berir, Ahmad Qazza","doi":"10.33889/ijmems.2023.8.5.052","DOIUrl":null,"url":null,"abstract":"Stochastic fractional differential equations are among the most significant and recent equations in physical mathematics. Consequently, several scholars have recently been interested in these equations to develop analytical approximations. In this study, we highlight the stochastic fractional space Allen-Cahn equation (SFACE) as a major application of this class. In addition, we utilize the simplest equation method (SEM) with a dual sense of Brownian motion to convert the presented equation into an ordinary differential equation (ODE) and apply an effective computational technique to obtain exact solutions. By carefully comparing the derived solutions with solutions from other articles, we prove the distinction of these solutions for their diversity and the discovery of new solutions for SFACE that appear in many scientific fields, such as mathematical biology, quantum mechanics, and plasma physics. The results introduced in this article were obtained by plotting several graphs and examining how noise affects exact solutions using Mathematica and MATLAB software packages.","PeriodicalId":44185,"journal":{"name":"International Journal of Mathematical Engineering and Management Sciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Perspective on the Stochastic Fractional Order Materialized by the Exact Solutions of Allen-Cahn Equation\",\"authors\":\"F. Hasan, Mohamed A. Abdoon, Rania Saadeh, Mohammed Berir, Ahmad Qazza\",\"doi\":\"10.33889/ijmems.2023.8.5.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic fractional differential equations are among the most significant and recent equations in physical mathematics. Consequently, several scholars have recently been interested in these equations to develop analytical approximations. In this study, we highlight the stochastic fractional space Allen-Cahn equation (SFACE) as a major application of this class. In addition, we utilize the simplest equation method (SEM) with a dual sense of Brownian motion to convert the presented equation into an ordinary differential equation (ODE) and apply an effective computational technique to obtain exact solutions. By carefully comparing the derived solutions with solutions from other articles, we prove the distinction of these solutions for their diversity and the discovery of new solutions for SFACE that appear in many scientific fields, such as mathematical biology, quantum mechanics, and plasma physics. The results introduced in this article were obtained by plotting several graphs and examining how noise affects exact solutions using Mathematica and MATLAB software packages.\",\"PeriodicalId\":44185,\"journal\":{\"name\":\"International Journal of Mathematical Engineering and Management Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematical Engineering and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33889/ijmems.2023.8.5.052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Engineering and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33889/ijmems.2023.8.5.052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A New Perspective on the Stochastic Fractional Order Materialized by the Exact Solutions of Allen-Cahn Equation
Stochastic fractional differential equations are among the most significant and recent equations in physical mathematics. Consequently, several scholars have recently been interested in these equations to develop analytical approximations. In this study, we highlight the stochastic fractional space Allen-Cahn equation (SFACE) as a major application of this class. In addition, we utilize the simplest equation method (SEM) with a dual sense of Brownian motion to convert the presented equation into an ordinary differential equation (ODE) and apply an effective computational technique to obtain exact solutions. By carefully comparing the derived solutions with solutions from other articles, we prove the distinction of these solutions for their diversity and the discovery of new solutions for SFACE that appear in many scientific fields, such as mathematical biology, quantum mechanics, and plasma physics. The results introduced in this article were obtained by plotting several graphs and examining how noise affects exact solutions using Mathematica and MATLAB software packages.
期刊介绍:
IJMEMS is a peer reviewed international journal aiming on both the theoretical and practical aspects of mathematical, engineering and management sciences. The original, not-previously published, research manuscripts on topics such as the following (but not limited to) will be considered for publication: *Mathematical Sciences- applied mathematics and allied fields, operations research, mathematical statistics. *Engineering Sciences- computer science engineering, mechanical engineering, information technology engineering, civil engineering, aeronautical engineering, industrial engineering, systems engineering, reliability engineering, production engineering. *Management Sciences- engineering management, risk management, business models, supply chain management.