D. Jevtics, B. Guilhabert, A. Hurtado, M.D. Dawson, M.J. Strain
{"title":"单纳米线器件与片上光子学和电子学的确定性集成","authors":"D. Jevtics, B. Guilhabert, A. Hurtado, M.D. Dawson, M.J. Strain","doi":"10.1016/j.pquantelec.2022.100394","DOIUrl":null,"url":null,"abstract":"<div><p>The epitaxial growth of semiconductor materials in nanowire geometries is enabling a new class of compact, micron scale optoelectronic devices. The deterministic selection and integration of single nanowire devices, from large growth populations, is required with high spatial accuracy and yield to enable their integration with on-chip systems. In this review we highlight the main methods by which single nanowires can be transferred from their growth substrate to a target chip. We present a range of chip-scale devices enabled by single NW transfer, including optical sources, receivers and waveguide networks. We discuss the scalability of common integration methods and their compatibility with standard lithographic methods and electronic contacting.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"85 ","pages":"Article 100394"},"PeriodicalIF":7.4000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079672722000209/pdfft?md5=1f0fcaffa3d96c1615bfb8d16453f533&pid=1-s2.0-S0079672722000209-main.pdf","citationCount":"6","resultStr":"{\"title\":\"Deterministic integration of single nanowire devices with on-chip photonics and electronics\",\"authors\":\"D. Jevtics, B. Guilhabert, A. Hurtado, M.D. Dawson, M.J. Strain\",\"doi\":\"10.1016/j.pquantelec.2022.100394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The epitaxial growth of semiconductor materials in nanowire geometries is enabling a new class of compact, micron scale optoelectronic devices. The deterministic selection and integration of single nanowire devices, from large growth populations, is required with high spatial accuracy and yield to enable their integration with on-chip systems. In this review we highlight the main methods by which single nanowires can be transferred from their growth substrate to a target chip. We present a range of chip-scale devices enabled by single NW transfer, including optical sources, receivers and waveguide networks. We discuss the scalability of common integration methods and their compatibility with standard lithographic methods and electronic contacting.</p></div>\",\"PeriodicalId\":414,\"journal\":{\"name\":\"Progress in Quantum Electronics\",\"volume\":\"85 \",\"pages\":\"Article 100394\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0079672722000209/pdfft?md5=1f0fcaffa3d96c1615bfb8d16453f533&pid=1-s2.0-S0079672722000209-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Quantum Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079672722000209\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672722000209","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Deterministic integration of single nanowire devices with on-chip photonics and electronics
The epitaxial growth of semiconductor materials in nanowire geometries is enabling a new class of compact, micron scale optoelectronic devices. The deterministic selection and integration of single nanowire devices, from large growth populations, is required with high spatial accuracy and yield to enable their integration with on-chip systems. In this review we highlight the main methods by which single nanowires can be transferred from their growth substrate to a target chip. We present a range of chip-scale devices enabled by single NW transfer, including optical sources, receivers and waveguide networks. We discuss the scalability of common integration methods and their compatibility with standard lithographic methods and electronic contacting.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.