Nicolas Castro, Qiang Wang, Jingjie Zhang, Weiling Li, Y. Pithawalla, Michael Oldham, Ali Rostami
{"title":"应用口腔和咽喉物理模型研究吸入气溶胶的复杂动力学","authors":"Nicolas Castro, Qiang Wang, Jingjie Zhang, Weiling Li, Y. Pithawalla, Michael Oldham, Ali Rostami","doi":"10.1080/02786826.2023.2253302","DOIUrl":null,"url":null,"abstract":"Abstract A unique adult human mouth/throat physical model has been developed to study e-cigarette aerosol dynamics during inhalation. The 3D printed physical model was created from the CT scan of a 28 yr. old healthy male. Internal walls of the physical model were lined with a thin layer of cotton gauze that can be saturated with water to replicate the high relative humidity conditions in a human Oral/Pharyngeal cavity. Aerosol hygroscopic growth and deposition inside the physical model from a cartomizer style e-cigarette using a prototype e-liquid formulation was determined by measuring cumulative aerosol mass from five puffs (gravimetric) and for individual constituents (propylene glycol, glycerol, and nicotine) from a single puff (GC/MS analysis). Measurements were taken at constant temperature of 37 °C under both wet and dry inner wall conditions for a for a 3-sec. 55 mL puff. The condition of holding aerosol inside the physical model without airflow for a duration of 3-sec. was also included. For the same puffing conditions of 3-sec puff of 55 mL and a 3-sec. puff hold time, dry wall conditions resulted in a mean aerosol mass loss of 20.9 ± 3.8%, while the total aerosol mass was increased by 150.9 ± 19% under wet wall condition when compared to total aerosol mass entering the physical model entrance. The dramatic increase is due to water vapor uptake by the aerosol particles when flowing through the wetted physical model. Aerosol evolution of individual chemical constituent analysis appeared to vary as a function of volatility.","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of a Physical Model of the Human Mouth and Throat to Study the Complex Dynamics of Inhaled Aerosols\",\"authors\":\"Nicolas Castro, Qiang Wang, Jingjie Zhang, Weiling Li, Y. Pithawalla, Michael Oldham, Ali Rostami\",\"doi\":\"10.1080/02786826.2023.2253302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A unique adult human mouth/throat physical model has been developed to study e-cigarette aerosol dynamics during inhalation. The 3D printed physical model was created from the CT scan of a 28 yr. old healthy male. Internal walls of the physical model were lined with a thin layer of cotton gauze that can be saturated with water to replicate the high relative humidity conditions in a human Oral/Pharyngeal cavity. Aerosol hygroscopic growth and deposition inside the physical model from a cartomizer style e-cigarette using a prototype e-liquid formulation was determined by measuring cumulative aerosol mass from five puffs (gravimetric) and for individual constituents (propylene glycol, glycerol, and nicotine) from a single puff (GC/MS analysis). Measurements were taken at constant temperature of 37 °C under both wet and dry inner wall conditions for a for a 3-sec. 55 mL puff. The condition of holding aerosol inside the physical model without airflow for a duration of 3-sec. was also included. For the same puffing conditions of 3-sec puff of 55 mL and a 3-sec. puff hold time, dry wall conditions resulted in a mean aerosol mass loss of 20.9 ± 3.8%, while the total aerosol mass was increased by 150.9 ± 19% under wet wall condition when compared to total aerosol mass entering the physical model entrance. The dramatic increase is due to water vapor uptake by the aerosol particles when flowing through the wetted physical model. Aerosol evolution of individual chemical constituent analysis appeared to vary as a function of volatility.\",\"PeriodicalId\":7474,\"journal\":{\"name\":\"Aerosol Science and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/02786826.2023.2253302\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02786826.2023.2253302","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Application of a Physical Model of the Human Mouth and Throat to Study the Complex Dynamics of Inhaled Aerosols
Abstract A unique adult human mouth/throat physical model has been developed to study e-cigarette aerosol dynamics during inhalation. The 3D printed physical model was created from the CT scan of a 28 yr. old healthy male. Internal walls of the physical model were lined with a thin layer of cotton gauze that can be saturated with water to replicate the high relative humidity conditions in a human Oral/Pharyngeal cavity. Aerosol hygroscopic growth and deposition inside the physical model from a cartomizer style e-cigarette using a prototype e-liquid formulation was determined by measuring cumulative aerosol mass from five puffs (gravimetric) and for individual constituents (propylene glycol, glycerol, and nicotine) from a single puff (GC/MS analysis). Measurements were taken at constant temperature of 37 °C under both wet and dry inner wall conditions for a for a 3-sec. 55 mL puff. The condition of holding aerosol inside the physical model without airflow for a duration of 3-sec. was also included. For the same puffing conditions of 3-sec puff of 55 mL and a 3-sec. puff hold time, dry wall conditions resulted in a mean aerosol mass loss of 20.9 ± 3.8%, while the total aerosol mass was increased by 150.9 ± 19% under wet wall condition when compared to total aerosol mass entering the physical model entrance. The dramatic increase is due to water vapor uptake by the aerosol particles when flowing through the wetted physical model. Aerosol evolution of individual chemical constituent analysis appeared to vary as a function of volatility.
期刊介绍:
Aerosol Science and Technology publishes theoretical, numerical and experimental investigations papers that advance knowledge of aerosols and facilitate its application. Articles on either basic or applied work are suitable. Examples of topics include instrumentation for the measurement of aerosol physical, optical, chemical and biological properties; aerosol dynamics and transport phenomena; numerical modeling; charging; nucleation; nanoparticles and nanotechnology; lung deposition and health effects; filtration; and aerosol generation.
Consistent with the criteria given above, papers that deal with the atmosphere, climate change, indoor and workplace environments, homeland security, pharmaceutical aerosols, combustion sources, aerosol synthesis reactors, and contamination control in semiconductor manufacturing will be considered. AST normally does not consider papers that describe routine measurements or models for aerosol air quality assessment.