单次闪速地热循环的常规和先进火用分析

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS
Xianzhi Tang, Gongxing Yan, Azher M. Abed, Aman Sharma, Elsayed Tag-Eldin, Yashar Aryanfar, Jorge Luis García Alcaraz
{"title":"单次闪速地热循环的常规和先进火用分析","authors":"Xianzhi Tang,&nbsp;Gongxing Yan,&nbsp;Azher M. Abed,&nbsp;Aman Sharma,&nbsp;Elsayed Tag-Eldin,&nbsp;Yashar Aryanfar,&nbsp;Jorge Luis García Alcaraz","doi":"10.1186/s40517-022-00228-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the inefficiency of the studied energy conversion system is identified to reduce losses and improve performance. A conventional exergy analysis has limitations that it is not able to detect and this detection is done with advanced exergy analysis. The main role of advanced exergy analysis is to help engineers improve system design and performance by providing information. This provision of information is done by isolating the exergy destruction. Separation of exergy destruction into endogenous/exogenous and unavoidable/avoidable components presents a new development in the exergy analysis of energy conversion systems, which in this paper combines both concepts. This separation increases the accuracy of the exergy analysis and facilitates the improvement of a system. The method used in this paper for separation is the thermodynamic cycle method, which is based on determining the temperature levels for ideal and irreversible cycles.</p><h3>Graphical Abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-022-00228-0","citationCount":"2","resultStr":"{\"title\":\"Conventional and advanced exergy analysis of a single flash geothermal cycle\",\"authors\":\"Xianzhi Tang,&nbsp;Gongxing Yan,&nbsp;Azher M. Abed,&nbsp;Aman Sharma,&nbsp;Elsayed Tag-Eldin,&nbsp;Yashar Aryanfar,&nbsp;Jorge Luis García Alcaraz\",\"doi\":\"10.1186/s40517-022-00228-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the inefficiency of the studied energy conversion system is identified to reduce losses and improve performance. A conventional exergy analysis has limitations that it is not able to detect and this detection is done with advanced exergy analysis. The main role of advanced exergy analysis is to help engineers improve system design and performance by providing information. This provision of information is done by isolating the exergy destruction. Separation of exergy destruction into endogenous/exogenous and unavoidable/avoidable components presents a new development in the exergy analysis of energy conversion systems, which in this paper combines both concepts. This separation increases the accuracy of the exergy analysis and facilitates the improvement of a system. The method used in this paper for separation is the thermodynamic cycle method, which is based on determining the temperature levels for ideal and irreversible cycles.</p><h3>Graphical Abstract</h3>\\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\\n </div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-022-00228-0\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-022-00228-0\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-022-00228-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

摘要

本文对所研究的能量转换系统的低效率进行了识别,以减少损耗,提高性能。传统的火用分析有局限性,它无法检测到,这种检测是通过先进的火用分析来完成的。先进的火用分析的主要作用是通过提供信息来帮助工程师改进系统设计和性能。这种信息的提供是通过隔离能量破坏来完成的。将火用破坏分解为内生/外生和不可避免/可避免两部分是能量转换系统火用分析的新发展,本文将两者结合起来。这种分离增加了火用分析的准确性,并促进了系统的改进。本文采用的分离方法是热力学循环法,该方法以确定理想循环和不可逆循环的温度水平为基础。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conventional and advanced exergy analysis of a single flash geothermal cycle

In this paper, the inefficiency of the studied energy conversion system is identified to reduce losses and improve performance. A conventional exergy analysis has limitations that it is not able to detect and this detection is done with advanced exergy analysis. The main role of advanced exergy analysis is to help engineers improve system design and performance by providing information. This provision of information is done by isolating the exergy destruction. Separation of exergy destruction into endogenous/exogenous and unavoidable/avoidable components presents a new development in the exergy analysis of energy conversion systems, which in this paper combines both concepts. This separation increases the accuracy of the exergy analysis and facilitates the improvement of a system. The method used in this paper for separation is the thermodynamic cycle method, which is based on determining the temperature levels for ideal and irreversible cycles.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信