Xiaoli Liu, Huan Zhang, Tingbin Zhang, Yanyun Wang, W. Jiao, Xiaofeng Lu, Xiao Gao, Mengmeng Xie, Qingfeng Shan, Nana Wen, Chen Liu, Wee Siang Vincent Lee, Haiming Fan
{"title":"磁性纳米材料介导的癌症诊断与治疗","authors":"Xiaoli Liu, Huan Zhang, Tingbin Zhang, Yanyun Wang, W. Jiao, Xiaofeng Lu, Xiao Gao, Mengmeng Xie, Qingfeng Shan, Nana Wen, Chen Liu, Wee Siang Vincent Lee, Haiming Fan","doi":"10.1088/2516-1091/ac3111","DOIUrl":null,"url":null,"abstract":"Magnetic nanomaterials have been widely used in various biomedical applications, which have seen accelerating interest since the breakthrough in the chemical synthesis of monodispersed iron oxide nanoparticles. Magnetic iron oxide nanoparticles (MIONs) possess excellent biocompatibility, and they can produce multiple physicochemical effects when exposed to magnetic fields. Due to this rapid development in MIONs for cancer diagnosis and therapy, it becomes necessary to present a comprehensive review paper from the biomedical engineering perspective. This review will present an overview of the recent synthesis methods used in the preparation of magnetic nanomaterials. We will then focus on the application of magnetic nanomaterials in imaging and therapy technology, and we will also evaluate their biosafety in vitro, in vivo, and clinical aspects. The therapeutic effects of magnetic theranostics, magnetocatalytic therapy, magnetically targeted therapy, and magnetothermal therapy under the guidance of imaging diagnosis will also be discussed in this review. Finally, we will briefly analyze the challenges of implementing magnetic nanomaterials as a nano-platform for imaging diagnosis and treatment, and we will also offer suggestions for future research in this field.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Magnetic nanomaterials-mediated cancer diagnosis and therapy\",\"authors\":\"Xiaoli Liu, Huan Zhang, Tingbin Zhang, Yanyun Wang, W. Jiao, Xiaofeng Lu, Xiao Gao, Mengmeng Xie, Qingfeng Shan, Nana Wen, Chen Liu, Wee Siang Vincent Lee, Haiming Fan\",\"doi\":\"10.1088/2516-1091/ac3111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic nanomaterials have been widely used in various biomedical applications, which have seen accelerating interest since the breakthrough in the chemical synthesis of monodispersed iron oxide nanoparticles. Magnetic iron oxide nanoparticles (MIONs) possess excellent biocompatibility, and they can produce multiple physicochemical effects when exposed to magnetic fields. Due to this rapid development in MIONs for cancer diagnosis and therapy, it becomes necessary to present a comprehensive review paper from the biomedical engineering perspective. This review will present an overview of the recent synthesis methods used in the preparation of magnetic nanomaterials. We will then focus on the application of magnetic nanomaterials in imaging and therapy technology, and we will also evaluate their biosafety in vitro, in vivo, and clinical aspects. The therapeutic effects of magnetic theranostics, magnetocatalytic therapy, magnetically targeted therapy, and magnetothermal therapy under the guidance of imaging diagnosis will also be discussed in this review. Finally, we will briefly analyze the challenges of implementing magnetic nanomaterials as a nano-platform for imaging diagnosis and treatment, and we will also offer suggestions for future research in this field.\",\"PeriodicalId\":74582,\"journal\":{\"name\":\"Progress in biomedical engineering (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in biomedical engineering (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1091/ac3111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/ac3111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Magnetic nanomaterials-mediated cancer diagnosis and therapy
Magnetic nanomaterials have been widely used in various biomedical applications, which have seen accelerating interest since the breakthrough in the chemical synthesis of monodispersed iron oxide nanoparticles. Magnetic iron oxide nanoparticles (MIONs) possess excellent biocompatibility, and they can produce multiple physicochemical effects when exposed to magnetic fields. Due to this rapid development in MIONs for cancer diagnosis and therapy, it becomes necessary to present a comprehensive review paper from the biomedical engineering perspective. This review will present an overview of the recent synthesis methods used in the preparation of magnetic nanomaterials. We will then focus on the application of magnetic nanomaterials in imaging and therapy technology, and we will also evaluate their biosafety in vitro, in vivo, and clinical aspects. The therapeutic effects of magnetic theranostics, magnetocatalytic therapy, magnetically targeted therapy, and magnetothermal therapy under the guidance of imaging diagnosis will also be discussed in this review. Finally, we will briefly analyze the challenges of implementing magnetic nanomaterials as a nano-platform for imaging diagnosis and treatment, and we will also offer suggestions for future research in this field.