{"title":"高强度钢焊接金属的冶金设计规则","authors":"K. Sampath","doi":"10.29391/2022.101.010","DOIUrl":null,"url":null,"abstract":"A review of a dilatometric analysis of selected Fe-C-Mn high-strength steel shielded metal arc weld metals showed that balanced Ti, B, Al, O, and N additions reduced the austenite-to-ferrite transformation-start (TS) temperature. These microalloy additions must match the following aim levels for composition control: Ti at 400 ppm (0.04 wt-%), B at 40 ppm (0.004 wt-%), Al at 200 ppm (0.020 wt-%), O at 400 ppm (0.04 wt-%), and N preferably below 80 ppm (0.008 wt-%) to ensure effective deoxidation, form complex inclusions, and distribute them to enable development of highly fracture-resistant refined weld metal microstructures. It may be wiser to avoid the rich and lean ends for these microalloy additions, except N, which should be held at the lean end, preferably much below 80 ppm (0.008 wt-%). The balanced Ti, B, Al, O, and N additions offered nearly a 100°C shift in lowering the Charpy V-notch (CVN) test temperature for either 28 or 100 J absorbed energy. Dilatometric evaluations of reheated weld metals showed that 1) the balanced Ti, B, Al, O, and N additions lowered the actual TS temperature by about 60°C compared to the calculated austenite-to-ferrite transformation temperature obtained from the constitutional equation; 2) N with more than 100 ppm (0.010 wt-%) effectively nullified the beneficial effects of Ti, B, and Al additions in lowering the transformation temperature; and 3) at N content much below 80 ppm (0.008 wt-%), both a lower TS temperature and a narrow start-to-finish (TS–Tf) temperature range helped in achieving exceptional weld metal CVN impact toughness.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Metallurgical Design Rules for High-Strength Steel Weld Metals\",\"authors\":\"K. Sampath\",\"doi\":\"10.29391/2022.101.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A review of a dilatometric analysis of selected Fe-C-Mn high-strength steel shielded metal arc weld metals showed that balanced Ti, B, Al, O, and N additions reduced the austenite-to-ferrite transformation-start (TS) temperature. These microalloy additions must match the following aim levels for composition control: Ti at 400 ppm (0.04 wt-%), B at 40 ppm (0.004 wt-%), Al at 200 ppm (0.020 wt-%), O at 400 ppm (0.04 wt-%), and N preferably below 80 ppm (0.008 wt-%) to ensure effective deoxidation, form complex inclusions, and distribute them to enable development of highly fracture-resistant refined weld metal microstructures. It may be wiser to avoid the rich and lean ends for these microalloy additions, except N, which should be held at the lean end, preferably much below 80 ppm (0.008 wt-%). The balanced Ti, B, Al, O, and N additions offered nearly a 100°C shift in lowering the Charpy V-notch (CVN) test temperature for either 28 or 100 J absorbed energy. Dilatometric evaluations of reheated weld metals showed that 1) the balanced Ti, B, Al, O, and N additions lowered the actual TS temperature by about 60°C compared to the calculated austenite-to-ferrite transformation temperature obtained from the constitutional equation; 2) N with more than 100 ppm (0.010 wt-%) effectively nullified the beneficial effects of Ti, B, and Al additions in lowering the transformation temperature; and 3) at N content much below 80 ppm (0.008 wt-%), both a lower TS temperature and a narrow start-to-finish (TS–Tf) temperature range helped in achieving exceptional weld metal CVN impact toughness.\",\"PeriodicalId\":23681,\"journal\":{\"name\":\"Welding Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.29391/2022.101.010\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2022.101.010","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Metallurgical Design Rules for High-Strength Steel Weld Metals
A review of a dilatometric analysis of selected Fe-C-Mn high-strength steel shielded metal arc weld metals showed that balanced Ti, B, Al, O, and N additions reduced the austenite-to-ferrite transformation-start (TS) temperature. These microalloy additions must match the following aim levels for composition control: Ti at 400 ppm (0.04 wt-%), B at 40 ppm (0.004 wt-%), Al at 200 ppm (0.020 wt-%), O at 400 ppm (0.04 wt-%), and N preferably below 80 ppm (0.008 wt-%) to ensure effective deoxidation, form complex inclusions, and distribute them to enable development of highly fracture-resistant refined weld metal microstructures. It may be wiser to avoid the rich and lean ends for these microalloy additions, except N, which should be held at the lean end, preferably much below 80 ppm (0.008 wt-%). The balanced Ti, B, Al, O, and N additions offered nearly a 100°C shift in lowering the Charpy V-notch (CVN) test temperature for either 28 or 100 J absorbed energy. Dilatometric evaluations of reheated weld metals showed that 1) the balanced Ti, B, Al, O, and N additions lowered the actual TS temperature by about 60°C compared to the calculated austenite-to-ferrite transformation temperature obtained from the constitutional equation; 2) N with more than 100 ppm (0.010 wt-%) effectively nullified the beneficial effects of Ti, B, and Al additions in lowering the transformation temperature; and 3) at N content much below 80 ppm (0.008 wt-%), both a lower TS temperature and a narrow start-to-finish (TS–Tf) temperature range helped in achieving exceptional weld metal CVN impact toughness.
期刊介绍:
The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction.
Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.