Nandana Sengupta, Madeleine Udell, N. Srebro, James Evans
{"title":"稀疏数据重构、缺失值与矩阵分解多重插值","authors":"Nandana Sengupta, Madeleine Udell, N. Srebro, James Evans","doi":"10.1177/00811750221125799","DOIUrl":null,"url":null,"abstract":"Social science approaches to missing values predict avoided, unrequested, or lost information from dense data sets, typically surveys. The authors propose a matrix factorization approach to missing data imputation that (1) identifies underlying factors to model similarities across respondents and responses and (2) regularizes across factors to reduce their overinfluence for optimal data reconstruction. This approach may enable social scientists to draw new conclusions from sparse data sets with a large number of features, for example, historical or archival sources, online surveys with high attrition rates, or data sets created from Web scraping, which confound traditional imputation techniques. The authors introduce matrix factorization techniques and detail their probabilistic interpretation, and they demonstrate these techniques’ consistency with Rubin’s multiple imputation framework. The authors show via simulations using artificial data and data from real-world subsets of the General Social Survey and National Longitudinal Study of Youth cases for which matrix factorization techniques may be preferred. These findings recommend the use of matrix factorization for data reconstruction in several settings, particularly when data are Boolean and categorical and when large proportions of the data are missing.","PeriodicalId":48140,"journal":{"name":"Sociological Methodology","volume":"53 1","pages":"72 - 114"},"PeriodicalIF":2.4000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sparse Data Reconstruction, Missing Value and Multiple Imputation through Matrix Factorization\",\"authors\":\"Nandana Sengupta, Madeleine Udell, N. Srebro, James Evans\",\"doi\":\"10.1177/00811750221125799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social science approaches to missing values predict avoided, unrequested, or lost information from dense data sets, typically surveys. The authors propose a matrix factorization approach to missing data imputation that (1) identifies underlying factors to model similarities across respondents and responses and (2) regularizes across factors to reduce their overinfluence for optimal data reconstruction. This approach may enable social scientists to draw new conclusions from sparse data sets with a large number of features, for example, historical or archival sources, online surveys with high attrition rates, or data sets created from Web scraping, which confound traditional imputation techniques. The authors introduce matrix factorization techniques and detail their probabilistic interpretation, and they demonstrate these techniques’ consistency with Rubin’s multiple imputation framework. The authors show via simulations using artificial data and data from real-world subsets of the General Social Survey and National Longitudinal Study of Youth cases for which matrix factorization techniques may be preferred. These findings recommend the use of matrix factorization for data reconstruction in several settings, particularly when data are Boolean and categorical and when large proportions of the data are missing.\",\"PeriodicalId\":48140,\"journal\":{\"name\":\"Sociological Methodology\",\"volume\":\"53 1\",\"pages\":\"72 - 114\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociological Methodology\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/00811750221125799\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methodology","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/00811750221125799","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIOLOGY","Score":null,"Total":0}
Sparse Data Reconstruction, Missing Value and Multiple Imputation through Matrix Factorization
Social science approaches to missing values predict avoided, unrequested, or lost information from dense data sets, typically surveys. The authors propose a matrix factorization approach to missing data imputation that (1) identifies underlying factors to model similarities across respondents and responses and (2) regularizes across factors to reduce their overinfluence for optimal data reconstruction. This approach may enable social scientists to draw new conclusions from sparse data sets with a large number of features, for example, historical or archival sources, online surveys with high attrition rates, or data sets created from Web scraping, which confound traditional imputation techniques. The authors introduce matrix factorization techniques and detail their probabilistic interpretation, and they demonstrate these techniques’ consistency with Rubin’s multiple imputation framework. The authors show via simulations using artificial data and data from real-world subsets of the General Social Survey and National Longitudinal Study of Youth cases for which matrix factorization techniques may be preferred. These findings recommend the use of matrix factorization for data reconstruction in several settings, particularly when data are Boolean and categorical and when large proportions of the data are missing.
期刊介绍:
Sociological Methodology is a compendium of new and sometimes controversial advances in social science methodology. Contributions come from diverse areas and have something useful -- and often surprising -- to say about a wide range of topics ranging from legal and ethical issues surrounding data collection to the methodology of theory construction. In short, Sociological Methodology holds something of value -- and an interesting mix of lively controversy, too -- for nearly everyone who participates in the enterprise of sociological research.