Tetsushi Ito, Kazuya Kato, Chikara Nakayama, S. Usui
{"title":"关于log动机","authors":"Tetsushi Ito, Kazuya Kato, Chikara Nakayama, S. Usui","doi":"10.2140/tunis.2020.2.733","DOIUrl":null,"url":null,"abstract":"We define the categories of log motives and log mixed motives. The latter gives a new formulation for the category of mixed motives. We prove that the former is a semisimple abelian category if and only if the numerical equivalence and homological equivalence coincide, and that it is also equivalent to that the latter is a Tannakian category. We discuss various realizations, formulate Tate and Hodge conjectures, and verify them in curve case.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/tunis.2020.2.733","citationCount":"7","resultStr":"{\"title\":\"On log motives\",\"authors\":\"Tetsushi Ito, Kazuya Kato, Chikara Nakayama, S. Usui\",\"doi\":\"10.2140/tunis.2020.2.733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define the categories of log motives and log mixed motives. The latter gives a new formulation for the category of mixed motives. We prove that the former is a semisimple abelian category if and only if the numerical equivalence and homological equivalence coincide, and that it is also equivalent to that the latter is a Tannakian category. We discuss various realizations, formulate Tate and Hodge conjectures, and verify them in curve case.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/tunis.2020.2.733\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2020.2.733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2020.2.733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We define the categories of log motives and log mixed motives. The latter gives a new formulation for the category of mixed motives. We prove that the former is a semisimple abelian category if and only if the numerical equivalence and homological equivalence coincide, and that it is also equivalent to that the latter is a Tannakian category. We discuss various realizations, formulate Tate and Hodge conjectures, and verify them in curve case.