Bo Zu, Wang Li, Lisha Lan, Yiwei Liu, Yangyang Zhang, Jiawen Li, Xueyu Mei
{"title":"微塑料对Tylosin和四环素的吸附:吸附剂和盐度的行为和影响","authors":"Bo Zu, Wang Li, Lisha Lan, Yiwei Liu, Yangyang Zhang, Jiawen Li, Xueyu Mei","doi":"10.1007/s11270-023-06609-w","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastic pollution is becoming one of the most severe threats to the entire earth surface ecosystem; moreover, it has the potential to act as a carrier for other chemical pollutants, introducing these pollutants in diverse environments. To evaluate this threat, this study investigated the adsorption of two antibiotics, tylosin (TYL) and tetracycline (TC), onto three common environmental microplastics, polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC), through batch adsorption experiments. Overall, the Freundlich model fitted the isothermal adsorption well, which indicated inhomogeneous distribution of adsorption sites involved in the adsorption. The fitted parameters indicated that the adsorption of TYL and TC onto PVC was highest relative to that onto the other two microplastics, which was attributed to the differences in functional groups and crystallinity of polymers. The adsorption efficiency decreased with increasing microplastic concentration. Owing to the salting-out effect, the increase in salinity promoted TYL adsorption onto the microplastics; salinity had no significant effect on TC adsorption onto microplastics. The results suggest that microplastics can be carriers of antibiotics in the environment, for which the physicochemical properties of microplastics and antibiotics as well as environmental factors are crucial influencing factors. This study further clarifies the adsorption mechanisms of contaminants onto microplastics under different environmental conditions.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"234 9","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11270-023-06609-w.pdf","citationCount":"1","resultStr":"{\"title\":\"Adsorption of Tylosin and Tetracycline onto Microplastics: Behavior and Effects of Adsorbents and Salinity\",\"authors\":\"Bo Zu, Wang Li, Lisha Lan, Yiwei Liu, Yangyang Zhang, Jiawen Li, Xueyu Mei\",\"doi\":\"10.1007/s11270-023-06609-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microplastic pollution is becoming one of the most severe threats to the entire earth surface ecosystem; moreover, it has the potential to act as a carrier for other chemical pollutants, introducing these pollutants in diverse environments. To evaluate this threat, this study investigated the adsorption of two antibiotics, tylosin (TYL) and tetracycline (TC), onto three common environmental microplastics, polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC), through batch adsorption experiments. Overall, the Freundlich model fitted the isothermal adsorption well, which indicated inhomogeneous distribution of adsorption sites involved in the adsorption. The fitted parameters indicated that the adsorption of TYL and TC onto PVC was highest relative to that onto the other two microplastics, which was attributed to the differences in functional groups and crystallinity of polymers. The adsorption efficiency decreased with increasing microplastic concentration. Owing to the salting-out effect, the increase in salinity promoted TYL adsorption onto the microplastics; salinity had no significant effect on TC adsorption onto microplastics. The results suggest that microplastics can be carriers of antibiotics in the environment, for which the physicochemical properties of microplastics and antibiotics as well as environmental factors are crucial influencing factors. This study further clarifies the adsorption mechanisms of contaminants onto microplastics under different environmental conditions.</p></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":\"234 9\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11270-023-06609-w.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-023-06609-w\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-023-06609-w","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Adsorption of Tylosin and Tetracycline onto Microplastics: Behavior and Effects of Adsorbents and Salinity
Microplastic pollution is becoming one of the most severe threats to the entire earth surface ecosystem; moreover, it has the potential to act as a carrier for other chemical pollutants, introducing these pollutants in diverse environments. To evaluate this threat, this study investigated the adsorption of two antibiotics, tylosin (TYL) and tetracycline (TC), onto three common environmental microplastics, polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC), through batch adsorption experiments. Overall, the Freundlich model fitted the isothermal adsorption well, which indicated inhomogeneous distribution of adsorption sites involved in the adsorption. The fitted parameters indicated that the adsorption of TYL and TC onto PVC was highest relative to that onto the other two microplastics, which was attributed to the differences in functional groups and crystallinity of polymers. The adsorption efficiency decreased with increasing microplastic concentration. Owing to the salting-out effect, the increase in salinity promoted TYL adsorption onto the microplastics; salinity had no significant effect on TC adsorption onto microplastics. The results suggest that microplastics can be carriers of antibiotics in the environment, for which the physicochemical properties of microplastics and antibiotics as well as environmental factors are crucial influencing factors. This study further clarifies the adsorption mechanisms of contaminants onto microplastics under different environmental conditions.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.