基于预聚类和统计测试的概念漂移检测

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jones Sai-Wang Wan, Shenglin Wang
{"title":"基于预聚类和统计测试的概念漂移检测","authors":"Jones Sai-Wang Wan, Shenglin Wang","doi":"10.3966/160792642021032202020","DOIUrl":null,"url":null,"abstract":"Stream data processing has become an important issue in the last decade. Data streams are generated on the fly and possibly change their data distribution over time. Data stream processing requires some mechanisms or methods to adapt to the changes of data distribution, which is called the concept drift. Concept drift detection can be challenging due to the data labels are not known. In this paper, we propose a drift detection method based on the statistical test with clustering and feature extraction as preprocessing. The goal is to reduce the detection time with principal component analysis (PCA) for the feature extraction method. Experimental results on synthetic and real-world streaming data show that the clustering preprocessing improve the performance of the drift detection and feature extraction trade-off an insignificant performance of detection for speedup for the execution time.","PeriodicalId":50172,"journal":{"name":"Journal of Internet Technology","volume":"22 1","pages":"465-472"},"PeriodicalIF":0.9000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Concept Drift Detection Based on Pre-Clustering and Statistical Testing\",\"authors\":\"Jones Sai-Wang Wan, Shenglin Wang\",\"doi\":\"10.3966/160792642021032202020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stream data processing has become an important issue in the last decade. Data streams are generated on the fly and possibly change their data distribution over time. Data stream processing requires some mechanisms or methods to adapt to the changes of data distribution, which is called the concept drift. Concept drift detection can be challenging due to the data labels are not known. In this paper, we propose a drift detection method based on the statistical test with clustering and feature extraction as preprocessing. The goal is to reduce the detection time with principal component analysis (PCA) for the feature extraction method. Experimental results on synthetic and real-world streaming data show that the clustering preprocessing improve the performance of the drift detection and feature extraction trade-off an insignificant performance of detection for speedup for the execution time.\",\"PeriodicalId\":50172,\"journal\":{\"name\":\"Journal of Internet Technology\",\"volume\":\"22 1\",\"pages\":\"465-472\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3966/160792642021032202020\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3966/160792642021032202020","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

流数据处理在过去十年中已经成为一个重要问题。数据流是动态生成的,可能会随着时间的推移而改变其数据分布。数据流处理需要一些机制或方法来适应数据分布的变化,这被称为概念漂移。由于数据标签未知,概念漂移检测可能具有挑战性。在本文中,我们提出了一种基于统计检验的漂移检测方法,该方法以聚类和特征提取为预处理。目标是通过主成分分析(PCA)来减少特征提取方法的检测时间。在合成流数据和真实流数据上的实验结果表明,聚类预处理提高了漂移检测和特征提取的性能,而检测性能不显著,加快了执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concept Drift Detection Based on Pre-Clustering and Statistical Testing
Stream data processing has become an important issue in the last decade. Data streams are generated on the fly and possibly change their data distribution over time. Data stream processing requires some mechanisms or methods to adapt to the changes of data distribution, which is called the concept drift. Concept drift detection can be challenging due to the data labels are not known. In this paper, we propose a drift detection method based on the statistical test with clustering and feature extraction as preprocessing. The goal is to reduce the detection time with principal component analysis (PCA) for the feature extraction method. Experimental results on synthetic and real-world streaming data show that the clustering preprocessing improve the performance of the drift detection and feature extraction trade-off an insignificant performance of detection for speedup for the execution time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Internet Technology
Journal of Internet Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
3.20
自引率
18.80%
发文量
112
审稿时长
13.8 months
期刊介绍: The Journal of Internet Technology accepts original technical articles in all disciplines of Internet Technology & Applications. Manuscripts are submitted for review with the understanding that they have not been published elsewhere. Topics of interest to JIT include but not limited to: Broadband Networks Electronic service systems (Internet, Intranet, Extranet, E-Commerce, E-Business) Network Management Network Operating System (NOS) Intelligent systems engineering Government or Staff Jobs Computerization National Information Policy Multimedia systems Network Behavior Modeling Wireless/Satellite Communication Digital Library Distance Learning Internet/WWW Applications Telecommunication Networks Security in Networks and Systems Cloud Computing Internet of Things (IoT) IPv6 related topics are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信