{"title":"概念三维打印中耳模型在放射学学员复杂神经解剖学教学中的有效性","authors":"Cullen Fleming , Aparana Yepuri , Gaurav Watane , Anam Salman , Shivang Desai , Merissa Zeman , Ramin Javan","doi":"10.1016/j.stlm.2022.100070","DOIUrl":null,"url":null,"abstract":"<div><p>Introduction Middle ear anatomy is difficult for learners because of its intricate and complex anatomy. Historically its anatomy has been taught with dissections and figures. 3D printed models have grown in popularity for their ability to represent complex structures. This study sought to assess the efficacy of a conceptual 3D printed middle ear model in radiology trainee education.</p><p>Methods An uncontrolled before-after trial was performed in which radiology trainees participated in small group teaching sessions using a 3D printed conceptual middle ear model. Participant knowledge was assessed with identical pre- and 1-week post-intervention knowledge assessments and surveys.</p><p>Results A total of 26 participants completed the study. The mean pre-intervention test score for participants (out of 20) was 6 ± 3.4, which increased to 11.7 ± 3.5 (<em>p</em>-value < 0.02) following interaction with the model. Second year radiology residents had the largest improvement in score, 9.0 ± 4.2, while fourth year radiology residents had the least, 2.8 ± 2.6. The small increase in post-intervention scores for the neuroradiology fellows was not found to be statistically significant (<em>p</em>-value 0.07). Subgroup analysis of post-intervention knowledge found no statistical difference among participants of different years of training. The survey showed increased understanding and desire for incorporation into curriculum.</p><p>Discussion: Interaction with the 3D printed model was found to improve anatomical knowledge in radiology residents but not neuroradiology fellows, whose improvement was not statistically significant. All participants, regardless of their years of training, were found to have knowledge equivalent to that of a fellow following their training.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"7 ","pages":"Article 100070"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266696412200025X/pdfft?md5=829cfe1bbe7c1e213006d2c4343bda85&pid=1-s2.0-S266696412200025X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effectiveness of a conceptual three-dimensionally printed model of the middle ear in teaching complex neuroanatomy to radiology trainees\",\"authors\":\"Cullen Fleming , Aparana Yepuri , Gaurav Watane , Anam Salman , Shivang Desai , Merissa Zeman , Ramin Javan\",\"doi\":\"10.1016/j.stlm.2022.100070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Introduction Middle ear anatomy is difficult for learners because of its intricate and complex anatomy. Historically its anatomy has been taught with dissections and figures. 3D printed models have grown in popularity for their ability to represent complex structures. This study sought to assess the efficacy of a conceptual 3D printed middle ear model in radiology trainee education.</p><p>Methods An uncontrolled before-after trial was performed in which radiology trainees participated in small group teaching sessions using a 3D printed conceptual middle ear model. Participant knowledge was assessed with identical pre- and 1-week post-intervention knowledge assessments and surveys.</p><p>Results A total of 26 participants completed the study. The mean pre-intervention test score for participants (out of 20) was 6 ± 3.4, which increased to 11.7 ± 3.5 (<em>p</em>-value < 0.02) following interaction with the model. Second year radiology residents had the largest improvement in score, 9.0 ± 4.2, while fourth year radiology residents had the least, 2.8 ± 2.6. The small increase in post-intervention scores for the neuroradiology fellows was not found to be statistically significant (<em>p</em>-value 0.07). Subgroup analysis of post-intervention knowledge found no statistical difference among participants of different years of training. The survey showed increased understanding and desire for incorporation into curriculum.</p><p>Discussion: Interaction with the 3D printed model was found to improve anatomical knowledge in radiology residents but not neuroradiology fellows, whose improvement was not statistically significant. All participants, regardless of their years of training, were found to have knowledge equivalent to that of a fellow following their training.</p></div>\",\"PeriodicalId\":72210,\"journal\":{\"name\":\"Annals of 3D printed medicine\",\"volume\":\"7 \",\"pages\":\"Article 100070\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266696412200025X/pdfft?md5=829cfe1bbe7c1e213006d2c4343bda85&pid=1-s2.0-S266696412200025X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of 3D printed medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266696412200025X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of 3D printed medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266696412200025X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Effectiveness of a conceptual three-dimensionally printed model of the middle ear in teaching complex neuroanatomy to radiology trainees
Introduction Middle ear anatomy is difficult for learners because of its intricate and complex anatomy. Historically its anatomy has been taught with dissections and figures. 3D printed models have grown in popularity for their ability to represent complex structures. This study sought to assess the efficacy of a conceptual 3D printed middle ear model in radiology trainee education.
Methods An uncontrolled before-after trial was performed in which radiology trainees participated in small group teaching sessions using a 3D printed conceptual middle ear model. Participant knowledge was assessed with identical pre- and 1-week post-intervention knowledge assessments and surveys.
Results A total of 26 participants completed the study. The mean pre-intervention test score for participants (out of 20) was 6 ± 3.4, which increased to 11.7 ± 3.5 (p-value < 0.02) following interaction with the model. Second year radiology residents had the largest improvement in score, 9.0 ± 4.2, while fourth year radiology residents had the least, 2.8 ± 2.6. The small increase in post-intervention scores for the neuroradiology fellows was not found to be statistically significant (p-value 0.07). Subgroup analysis of post-intervention knowledge found no statistical difference among participants of different years of training. The survey showed increased understanding and desire for incorporation into curriculum.
Discussion: Interaction with the 3D printed model was found to improve anatomical knowledge in radiology residents but not neuroradiology fellows, whose improvement was not statistically significant. All participants, regardless of their years of training, were found to have knowledge equivalent to that of a fellow following their training.