函子范畴中的广义倾斜理论

Pub Date : 2023-07-10 DOI:10.1017/S0017089523000162
Xi Tang
{"title":"函子范畴中的广义倾斜理论","authors":"Xi Tang","doi":"10.1017/S0017089523000162","DOIUrl":null,"url":null,"abstract":"Abstract This paper is devoted to the study of generalized tilting theory of functor categories in different levels. First, we extend Miyashita’s proof (Math Z 193:113–146,1986) of the generalized Brenner–Butler theorem to arbitrary functor categories \n$\\mathop{\\textrm{Mod}}\\nolimits\\!(\\mathcal{C})$\n with \n$\\mathcal{C}$\n an annuli variety. Second, a hereditary and complete cotorsion pair generated by a generalized tilting subcategory \n$\\mathcal{T}$\n of \n$\\mathop{\\textrm{Mod}}\\nolimits \\!(\\mathcal{C})$\n is constructed. Some applications of these two results include the equivalence of Grothendieck groups \n$K_0(\\mathcal{C})$\n and \n$K_0(\\mathcal{T})$\n , the existences of a new abelian model structure on the category of complexes \n$\\mathop{\\textrm{C}}\\nolimits \\!(\\!\\mathop{\\textrm{Mod}}\\nolimits\\!(\\mathcal{C}))$\n , and a t-structure on the derived category \n$\\mathop{\\textrm{D}}\\nolimits \\!(\\!\\mathop{\\textrm{Mod}}\\nolimits \\!(\\mathcal{C}))$\n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized tilting theory in functor categories\",\"authors\":\"Xi Tang\",\"doi\":\"10.1017/S0017089523000162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper is devoted to the study of generalized tilting theory of functor categories in different levels. First, we extend Miyashita’s proof (Math Z 193:113–146,1986) of the generalized Brenner–Butler theorem to arbitrary functor categories \\n$\\\\mathop{\\\\textrm{Mod}}\\\\nolimits\\\\!(\\\\mathcal{C})$\\n with \\n$\\\\mathcal{C}$\\n an annuli variety. Second, a hereditary and complete cotorsion pair generated by a generalized tilting subcategory \\n$\\\\mathcal{T}$\\n of \\n$\\\\mathop{\\\\textrm{Mod}}\\\\nolimits \\\\!(\\\\mathcal{C})$\\n is constructed. Some applications of these two results include the equivalence of Grothendieck groups \\n$K_0(\\\\mathcal{C})$\\n and \\n$K_0(\\\\mathcal{T})$\\n , the existences of a new abelian model structure on the category of complexes \\n$\\\\mathop{\\\\textrm{C}}\\\\nolimits \\\\!(\\\\!\\\\mathop{\\\\textrm{Mod}}\\\\nolimits\\\\!(\\\\mathcal{C}))$\\n , and a t-structure on the derived category \\n$\\\\mathop{\\\\textrm{D}}\\\\nolimits \\\\!(\\\\!\\\\mathop{\\\\textrm{Mod}}\\\\nolimits \\\\!(\\\\mathcal{C}))$\\n .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0017089523000162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089523000162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于在不同层次上研究函子范畴的广义倾斜理论。首先,我们将广义Brenner–Butler定理的Miyashita证明(Math Z 193:113–1461986)推广到任意函子范畴$\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C})$与$\mathcal{C}$是环状变体。其次,由$\mathop{\textrm{Mod}}\nolimits\的广义倾斜子类别$\mathcal{T}$生成的一个遗传完全余子对!构造了(\mathcal{C})$。这两个结果的一些应用包括Grothendieck群$K_0(\mathcal{C})$和$K_0!(\!\mathop{\textrm{Mod}}\nolimits\!(\!\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C}))$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Generalized tilting theory in functor categories
Abstract This paper is devoted to the study of generalized tilting theory of functor categories in different levels. First, we extend Miyashita’s proof (Math Z 193:113–146,1986) of the generalized Brenner–Butler theorem to arbitrary functor categories $\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C})$ with $\mathcal{C}$ an annuli variety. Second, a hereditary and complete cotorsion pair generated by a generalized tilting subcategory $\mathcal{T}$ of $\mathop{\textrm{Mod}}\nolimits \!(\mathcal{C})$ is constructed. Some applications of these two results include the equivalence of Grothendieck groups $K_0(\mathcal{C})$ and $K_0(\mathcal{T})$ , the existences of a new abelian model structure on the category of complexes $\mathop{\textrm{C}}\nolimits \!(\!\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C}))$ , and a t-structure on the derived category $\mathop{\textrm{D}}\nolimits \!(\!\mathop{\textrm{Mod}}\nolimits \!(\mathcal{C}))$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信