德布鲁因-纽曼常数是非负的

IF 2.8 1区 数学 Q1 MATHEMATICS
B. Rodgers, T. Tao
{"title":"德布鲁因-纽曼常数是非负的","authors":"B. Rodgers, T. Tao","doi":"10.1017/fmp.2020.6","DOIUrl":null,"url":null,"abstract":"For each $t\\in \\mathbb{R}$, we define the entire function $$\\begin{eqnarray}H_{t}(z):=\\int _{0}^{\\infty }e^{tu^{2}}\\unicode[STIX]{x1D6F7}(u)\\cos (zu)\\,du,\\end{eqnarray}$$ where $\\unicode[STIX]{x1D6F7}$ is the super-exponentially decaying function $$\\begin{eqnarray}\\unicode[STIX]{x1D6F7}(u):=\\mathop{\\sum }_{n=1}^{\\infty }(2\\unicode[STIX]{x1D70B}^{2}n^{4}e^{9u}-3\\unicode[STIX]{x1D70B}n^{2}e^{5u})\\exp (-\\unicode[STIX]{x1D70B}n^{2}e^{4u}).\\end{eqnarray}$$ Newman showed that there exists a finite constant $\\unicode[STIX]{x1D6EC}$ (the de Bruijn–Newman constant) such that the zeros of $H_{t}$ are all real precisely when $t\\geqslant \\unicode[STIX]{x1D6EC}$. The Riemann hypothesis is equivalent to the assertion $\\unicode[STIX]{x1D6EC}\\leqslant 0$, and Newman conjectured the complementary bound $\\unicode[STIX]{x1D6EC}\\geqslant 0$. In this paper, we establish Newman’s conjecture. The argument proceeds by assuming for contradiction that $\\unicode[STIX]{x1D6EC}<0$ and then analyzing the dynamics of zeros of $H_{t}$ (building on the work of Csordas, Smith and Varga) to obtain increasingly strong control on the zeros of $H_{t}$ in the range $\\unicode[STIX]{x1D6EC}<t\\leqslant 0$, until one establishes that the zeros of $H_{0}$ are in local equilibrium, in the sense that they locally behave (on average) as if they were equally spaced in an arithmetic progression, with gaps staying close to the global average gap size. But this latter claim is inconsistent with the known results about the local distribution of zeros of the Riemann zeta function, such as the pair correlation estimates of Montgomery.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2018-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/fmp.2020.6","citationCount":"36","resultStr":"{\"title\":\"THE DE BRUIJN–NEWMAN CONSTANT IS NON-NEGATIVE\",\"authors\":\"B. Rodgers, T. Tao\",\"doi\":\"10.1017/fmp.2020.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For each $t\\\\in \\\\mathbb{R}$, we define the entire function $$\\\\begin{eqnarray}H_{t}(z):=\\\\int _{0}^{\\\\infty }e^{tu^{2}}\\\\unicode[STIX]{x1D6F7}(u)\\\\cos (zu)\\\\,du,\\\\end{eqnarray}$$ where $\\\\unicode[STIX]{x1D6F7}$ is the super-exponentially decaying function $$\\\\begin{eqnarray}\\\\unicode[STIX]{x1D6F7}(u):=\\\\mathop{\\\\sum }_{n=1}^{\\\\infty }(2\\\\unicode[STIX]{x1D70B}^{2}n^{4}e^{9u}-3\\\\unicode[STIX]{x1D70B}n^{2}e^{5u})\\\\exp (-\\\\unicode[STIX]{x1D70B}n^{2}e^{4u}).\\\\end{eqnarray}$$ Newman showed that there exists a finite constant $\\\\unicode[STIX]{x1D6EC}$ (the de Bruijn–Newman constant) such that the zeros of $H_{t}$ are all real precisely when $t\\\\geqslant \\\\unicode[STIX]{x1D6EC}$. The Riemann hypothesis is equivalent to the assertion $\\\\unicode[STIX]{x1D6EC}\\\\leqslant 0$, and Newman conjectured the complementary bound $\\\\unicode[STIX]{x1D6EC}\\\\geqslant 0$. In this paper, we establish Newman’s conjecture. The argument proceeds by assuming for contradiction that $\\\\unicode[STIX]{x1D6EC}<0$ and then analyzing the dynamics of zeros of $H_{t}$ (building on the work of Csordas, Smith and Varga) to obtain increasingly strong control on the zeros of $H_{t}$ in the range $\\\\unicode[STIX]{x1D6EC}<t\\\\leqslant 0$, until one establishes that the zeros of $H_{0}$ are in local equilibrium, in the sense that they locally behave (on average) as if they were equally spaced in an arithmetic progression, with gaps staying close to the global average gap size. But this latter claim is inconsistent with the known results about the local distribution of zeros of the Riemann zeta function, such as the pair correlation estimates of Montgomery.\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2018-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/fmp.2020.6\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2020.6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2020.6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 36

摘要

对于每一个$t\in\mathbb{R}$,我们定义整个函数$$\boot{eqnarray}H_{t} (z):=\int _{0}^{\infty}e ^{tu ^{2}}\unicode[STIX]{x1D6F7}^{2}n^{4}e^{9u}-3\unicode{x1D70B}n^{2}e^{5u})\exp(-\unicode[STIX]{x1D70B}n^{2}e^{4u})。\end{eqnarray}$$Newman证明了存在一个有限常数$\unicode[STIX]{x1D6EC}$(de Bruijn–Newman常数),使得$H_。黎曼假说等价于断言$\unicode[STIX]{x1D6EC}\leqslant 0$,Newman猜想补界$\unicode[STIX]{x1d6C}\geqslant 0$。本文建立了Newman猜想。该论点通过假设$\unicode[STIX]{x1D6EC}<0$的矛盾,然后分析$H_,从某种意义上说,它们的局部行为(平均而言)就像它们在算术级数中等距一样,间隙保持接近全球平均间隙大小。但后一种说法与关于黎曼ζ函数零点局部分布的已知结果不一致,例如Montgomery的对相关估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE DE BRUIJN–NEWMAN CONSTANT IS NON-NEGATIVE
For each $t\in \mathbb{R}$, we define the entire function $$\begin{eqnarray}H_{t}(z):=\int _{0}^{\infty }e^{tu^{2}}\unicode[STIX]{x1D6F7}(u)\cos (zu)\,du,\end{eqnarray}$$ where $\unicode[STIX]{x1D6F7}$ is the super-exponentially decaying function $$\begin{eqnarray}\unicode[STIX]{x1D6F7}(u):=\mathop{\sum }_{n=1}^{\infty }(2\unicode[STIX]{x1D70B}^{2}n^{4}e^{9u}-3\unicode[STIX]{x1D70B}n^{2}e^{5u})\exp (-\unicode[STIX]{x1D70B}n^{2}e^{4u}).\end{eqnarray}$$ Newman showed that there exists a finite constant $\unicode[STIX]{x1D6EC}$ (the de Bruijn–Newman constant) such that the zeros of $H_{t}$ are all real precisely when $t\geqslant \unicode[STIX]{x1D6EC}$. The Riemann hypothesis is equivalent to the assertion $\unicode[STIX]{x1D6EC}\leqslant 0$, and Newman conjectured the complementary bound $\unicode[STIX]{x1D6EC}\geqslant 0$. In this paper, we establish Newman’s conjecture. The argument proceeds by assuming for contradiction that $\unicode[STIX]{x1D6EC}<0$ and then analyzing the dynamics of zeros of $H_{t}$ (building on the work of Csordas, Smith and Varga) to obtain increasingly strong control on the zeros of $H_{t}$ in the range $\unicode[STIX]{x1D6EC}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Pi
Forum of Mathematics Pi Mathematics-Statistics and Probability
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
19 weeks
期刊介绍: Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信