双曲守恒律的一个改进的高阶对称WENO格式

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
R. Abedian
{"title":"双曲守恒律的一个改进的高阶对称WENO格式","authors":"R. Abedian","doi":"10.1515/ijnsns-2021-0435","DOIUrl":null,"url":null,"abstract":"Abstract This paper designs a modified weighted essentially non-oscillatory (WENO) scheme for solving hyperbolic conservation laws. Using the switching principle based on inflection points, the new scheme automatically adapts between linear upwind and WENO schemes. If there is at least one inflection point in the largest stencil available for reconstruction, a symmetrical WENO (SWENO) scheme is considered for the reconstruction of the numerical flux; otherwise the numerical flux is directly approximated by the reconstruction polynomial. By comparing the new scheme introduced in this paper with the classical WENO scheme and another improved scheme that has been proposed recently D. Chai, G. Xi, Z. Sun, Z. Wangand Z. Huang,Comput. Fluids, vol. 170, pp. 176–186, 2018), we can point out the robustness and better efficiency of this scheme. To examine and explain the features of the new scheme, a number of examples such as Euler equations have been considered.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"24 1","pages":"1521 - 1538"},"PeriodicalIF":1.4000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A modified high-order symmetrical WENO scheme for hyperbolic conservation laws\",\"authors\":\"R. Abedian\",\"doi\":\"10.1515/ijnsns-2021-0435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper designs a modified weighted essentially non-oscillatory (WENO) scheme for solving hyperbolic conservation laws. Using the switching principle based on inflection points, the new scheme automatically adapts between linear upwind and WENO schemes. If there is at least one inflection point in the largest stencil available for reconstruction, a symmetrical WENO (SWENO) scheme is considered for the reconstruction of the numerical flux; otherwise the numerical flux is directly approximated by the reconstruction polynomial. By comparing the new scheme introduced in this paper with the classical WENO scheme and another improved scheme that has been proposed recently D. Chai, G. Xi, Z. Sun, Z. Wangand Z. Huang,Comput. Fluids, vol. 170, pp. 176–186, 2018), we can point out the robustness and better efficiency of this scheme. To examine and explain the features of the new scheme, a number of examples such as Euler equations have been considered.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\"24 1\",\"pages\":\"1521 - 1538\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0435\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0435","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文设计了一种求解双曲守恒律的改进加权本质无振荡(WENO)格式。利用基于拐点的切换原理,新方案自动适应线性逆风和WENO方案。如果在可用于重建的最大模板中至少有一个拐点,则考虑对称WENO(SWENO)方案来重建数值通量;否则,数值通量由重建多项式直接近似。将本文提出的新方案与经典WENO方案以及最近提出的另一种改进方案进行了比较。Fluids,第170卷,第176–1862018页),我们可以指出该方案的稳健性和更好的效率。为了检验和解释新方案的特点,考虑了一些例子,如欧拉方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified high-order symmetrical WENO scheme for hyperbolic conservation laws
Abstract This paper designs a modified weighted essentially non-oscillatory (WENO) scheme for solving hyperbolic conservation laws. Using the switching principle based on inflection points, the new scheme automatically adapts between linear upwind and WENO schemes. If there is at least one inflection point in the largest stencil available for reconstruction, a symmetrical WENO (SWENO) scheme is considered for the reconstruction of the numerical flux; otherwise the numerical flux is directly approximated by the reconstruction polynomial. By comparing the new scheme introduced in this paper with the classical WENO scheme and another improved scheme that has been proposed recently D. Chai, G. Xi, Z. Sun, Z. Wangand Z. Huang,Comput. Fluids, vol. 170, pp. 176–186, 2018), we can point out the robustness and better efficiency of this scheme. To examine and explain the features of the new scheme, a number of examples such as Euler equations have been considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信