生物制氢及其生物经济影响综述

Kanika Dulta, Adedapo O. Adeola, Segun E. Ashaolu, Titilope I. Banji, Joshua O. Ighalo
{"title":"生物制氢及其生物经济影响综述","authors":"Kanika Dulta,&nbsp;Adedapo O. Adeola,&nbsp;Segun E. Ashaolu,&nbsp;Titilope I. Banji,&nbsp;Joshua O. Ighalo","doi":"10.1007/s42768-022-00109-z","DOIUrl":null,"url":null,"abstract":"<div><p>The production of biohydrogen from biological processes is cleaner and more sustainable than that of fossil fuel-based hydrogen. The drive for cleaner and sustainable energy sources is an important facet of the bioeconomy. Based on these findings, this paper aimed to examine the significance and impact of biohydrogen on the bioeconomy. These bioprocessing strategies are primarily biophotolysis, fermentation and bio-electrolytic systems. Considering that biological processes are slow compared to other thermochemical production processes, production volumes cannot match that of the latter. The inherently slow nature of biochemical reactions taking place in living organisms is a challenge that puts biohydrogen at a disadvantage. Biological processes are also very sensitive to temperature and pH, thereby requiring more intricate process monitoring and control. To obtain equivalent volumes of biohydrogen compared to production strategies, larger and more intricate facilities would be needed, implying more cost implications. It is surmised that biohydrogen will continue to play an important role in the drive for a sustainable bioeconomy despite the current challenges it faces.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"4 3","pages":"219 - 230"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Biohydrogen production and its bioeconomic impact: a review\",\"authors\":\"Kanika Dulta,&nbsp;Adedapo O. Adeola,&nbsp;Segun E. Ashaolu,&nbsp;Titilope I. Banji,&nbsp;Joshua O. Ighalo\",\"doi\":\"10.1007/s42768-022-00109-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The production of biohydrogen from biological processes is cleaner and more sustainable than that of fossil fuel-based hydrogen. The drive for cleaner and sustainable energy sources is an important facet of the bioeconomy. Based on these findings, this paper aimed to examine the significance and impact of biohydrogen on the bioeconomy. These bioprocessing strategies are primarily biophotolysis, fermentation and bio-electrolytic systems. Considering that biological processes are slow compared to other thermochemical production processes, production volumes cannot match that of the latter. The inherently slow nature of biochemical reactions taking place in living organisms is a challenge that puts biohydrogen at a disadvantage. Biological processes are also very sensitive to temperature and pH, thereby requiring more intricate process monitoring and control. To obtain equivalent volumes of biohydrogen compared to production strategies, larger and more intricate facilities would be needed, implying more cost implications. It is surmised that biohydrogen will continue to play an important role in the drive for a sustainable bioeconomy despite the current challenges it faces.</p></div>\",\"PeriodicalId\":807,\"journal\":{\"name\":\"Waste Disposal & Sustainable Energy\",\"volume\":\"4 3\",\"pages\":\"219 - 230\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste Disposal & Sustainable Energy\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42768-022-00109-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-022-00109-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

通过生物过程生产生物氢比基于化石燃料的氢更清洁,更可持续。推动更清洁和可持续的能源是生物经济的一个重要方面。基于这些发现,本文旨在探讨生物氢对生物经济的意义和影响。这些生物处理策略主要是生物光解、发酵和生物电解系统。考虑到与其他热化学生产过程相比,生物过程是缓慢的,因此产量无法与后者相匹配。生物体内发生的生物化学反应固有的缓慢性质是一个挑战,使生物氢处于不利地位。生物过程对温度和pH值也非常敏感,因此需要更复杂的过程监测和控制。与生产策略相比,要获得同等数量的生物氢,需要更大、更复杂的设施,这意味着成本更高。据推测,尽管目前面临挑战,生物氢将继续在推动可持续生物经济方面发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biohydrogen production and its bioeconomic impact: a review

Biohydrogen production and its bioeconomic impact: a review

The production of biohydrogen from biological processes is cleaner and more sustainable than that of fossil fuel-based hydrogen. The drive for cleaner and sustainable energy sources is an important facet of the bioeconomy. Based on these findings, this paper aimed to examine the significance and impact of biohydrogen on the bioeconomy. These bioprocessing strategies are primarily biophotolysis, fermentation and bio-electrolytic systems. Considering that biological processes are slow compared to other thermochemical production processes, production volumes cannot match that of the latter. The inherently slow nature of biochemical reactions taking place in living organisms is a challenge that puts biohydrogen at a disadvantage. Biological processes are also very sensitive to temperature and pH, thereby requiring more intricate process monitoring and control. To obtain equivalent volumes of biohydrogen compared to production strategies, larger and more intricate facilities would be needed, implying more cost implications. It is surmised that biohydrogen will continue to play an important role in the drive for a sustainable bioeconomy despite the current challenges it faces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信