Songlin Liu , Luqi Wang , Wengang Zhang , Weixin Sun , Jie Fu , Ting Xiao , Zhenwei Dai
{"title":"基于数据驱动的三峡库区滑坡易感性评价模型","authors":"Songlin Liu , Luqi Wang , Wengang Zhang , Weixin Sun , Jie Fu , Ting Xiao , Zhenwei Dai","doi":"10.1016/j.gsf.2023.101621","DOIUrl":null,"url":null,"abstract":"<div><p>Landslide susceptibility mapping is a crucial tool for analyzing geohazards in a region. Recent publications have popularized data-driven models, particularly machine learning-based methods, owing to their strong capability in dealing with complex nonlinear problems. However, a significant proportion of these models have neglected qualitative aspects during analysis, resulting in a lack of interpretability throughout the process and causing inaccuracies in the negative sample extraction. In this study, Scoops 3D was employed as a physics-informed tool to qualitatively assess slope stability in the study area (the Hubei Province section of the Three Gorges Reservoir Area). The non-landslide samples were extracted based on the calculated factor of safety (FS). Subsequently, the random forest algorithm was employed for data-driven landslide susceptibility analysis, with the area under the receiver operating characteristic curve (AUC) serving as the model evaluation index. Compared to the benchmark model (i.e., the standard method of utilizing the pure random forest algorithm), the proposed method's AUC value improved by 20.1%, validating the effectiveness of the dual-driven method (physics-informed data-driven).d.</p></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"14 5","pages":"Article 101621"},"PeriodicalIF":8.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A physics-informed data-driven model for landslide susceptibility assessment in the Three Gorges Reservoir area\",\"authors\":\"Songlin Liu , Luqi Wang , Wengang Zhang , Weixin Sun , Jie Fu , Ting Xiao , Zhenwei Dai\",\"doi\":\"10.1016/j.gsf.2023.101621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Landslide susceptibility mapping is a crucial tool for analyzing geohazards in a region. Recent publications have popularized data-driven models, particularly machine learning-based methods, owing to their strong capability in dealing with complex nonlinear problems. However, a significant proportion of these models have neglected qualitative aspects during analysis, resulting in a lack of interpretability throughout the process and causing inaccuracies in the negative sample extraction. In this study, Scoops 3D was employed as a physics-informed tool to qualitatively assess slope stability in the study area (the Hubei Province section of the Three Gorges Reservoir Area). The non-landslide samples were extracted based on the calculated factor of safety (FS). Subsequently, the random forest algorithm was employed for data-driven landslide susceptibility analysis, with the area under the receiver operating characteristic curve (AUC) serving as the model evaluation index. Compared to the benchmark model (i.e., the standard method of utilizing the pure random forest algorithm), the proposed method's AUC value improved by 20.1%, validating the effectiveness of the dual-driven method (physics-informed data-driven).d.</p></div>\",\"PeriodicalId\":12711,\"journal\":{\"name\":\"Geoscience frontiers\",\"volume\":\"14 5\",\"pages\":\"Article 101621\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience frontiers\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674987123000889\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987123000889","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
A physics-informed data-driven model for landslide susceptibility assessment in the Three Gorges Reservoir area
Landslide susceptibility mapping is a crucial tool for analyzing geohazards in a region. Recent publications have popularized data-driven models, particularly machine learning-based methods, owing to their strong capability in dealing with complex nonlinear problems. However, a significant proportion of these models have neglected qualitative aspects during analysis, resulting in a lack of interpretability throughout the process and causing inaccuracies in the negative sample extraction. In this study, Scoops 3D was employed as a physics-informed tool to qualitatively assess slope stability in the study area (the Hubei Province section of the Three Gorges Reservoir Area). The non-landslide samples were extracted based on the calculated factor of safety (FS). Subsequently, the random forest algorithm was employed for data-driven landslide susceptibility analysis, with the area under the receiver operating characteristic curve (AUC) serving as the model evaluation index. Compared to the benchmark model (i.e., the standard method of utilizing the pure random forest algorithm), the proposed method's AUC value improved by 20.1%, validating the effectiveness of the dual-driven method (physics-informed data-driven).d.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.