热固性介质紫外改性化学镀及高频传输性能衰减抑制

Q4 Engineering
Masaya Toba, Kazuyuki Mitsukura, M. Yamaguchi
{"title":"热固性介质紫外改性化学镀及高频传输性能衰减抑制","authors":"Masaya Toba, Kazuyuki Mitsukura, M. Yamaguchi","doi":"10.4071/2380-4505-2020.1.000174","DOIUrl":null,"url":null,"abstract":"\n Semiconductor packages for high-performance devices with printed circuit boards having multi-wiring layers such as FC-BGA have been attracting attention to realize ultrareliable and low-latency communications in 5G networking. Cu wirings for the package are usually fabricated by the semi-additive process (SAP) with the de-smear process and/or the modified semi-additive process (MSAP) by using Cu film with large surface roughness. Although a de-smear process and Cu film can obtain enough adhesion between dielectric and Cu seed layer by the anchoring effect to secure reliabilities, the interface between dielectric and Cu seed layer should be smooth to achieve low attenuation of electric signals at high frequencies. Here, instead of those processes, we applied UV modification for the surface of our developed thermosetting dielectric to realize a smooth and high-adhesive seed layer against the dielectric. We obtained .5 kN/m of peel strength between dielectric and Cu seed layer despite surface roughness (Ra) of dielectric being 265 nm by the nano-level anchoring effect at UV modified layer. Because of the smooth interface by UV modification, the normalized S21 value of micro-strip line was about 29% improved compared with that assembled through Cu film with Ra of 2,400 nm at 50 GHz.","PeriodicalId":35312,"journal":{"name":"Journal of Microelectronics and Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Electroless Plating with UV Modification for Thermosetting Dielectric and Decay Suppression of High Frequency Transmission Property\",\"authors\":\"Masaya Toba, Kazuyuki Mitsukura, M. Yamaguchi\",\"doi\":\"10.4071/2380-4505-2020.1.000174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Semiconductor packages for high-performance devices with printed circuit boards having multi-wiring layers such as FC-BGA have been attracting attention to realize ultrareliable and low-latency communications in 5G networking. Cu wirings for the package are usually fabricated by the semi-additive process (SAP) with the de-smear process and/or the modified semi-additive process (MSAP) by using Cu film with large surface roughness. Although a de-smear process and Cu film can obtain enough adhesion between dielectric and Cu seed layer by the anchoring effect to secure reliabilities, the interface between dielectric and Cu seed layer should be smooth to achieve low attenuation of electric signals at high frequencies. Here, instead of those processes, we applied UV modification for the surface of our developed thermosetting dielectric to realize a smooth and high-adhesive seed layer against the dielectric. We obtained .5 kN/m of peel strength between dielectric and Cu seed layer despite surface roughness (Ra) of dielectric being 265 nm by the nano-level anchoring effect at UV modified layer. Because of the smooth interface by UV modification, the normalized S21 value of micro-strip line was about 29% improved compared with that assembled through Cu film with Ra of 2,400 nm at 50 GHz.\",\"PeriodicalId\":35312,\"journal\":{\"name\":\"Journal of Microelectronics and Electronic Packaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectronics and Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/2380-4505-2020.1.000174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectronics and Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/2380-4505-2020.1.000174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

摘要

FC-BGA等多布线层印刷电路板的高性能器件半导体封装为实现5G网络下的超可靠、低延迟通信备受关注。封装用铜导线通常采用带去污工艺的半添加工艺(SAP)和/或使用表面粗糙度较大的铜膜的改进半添加工艺(MSAP)制造。虽然去污工艺和Cu膜可以通过锚定效应在介电介质和Cu种子层之间获得足够的附着力以保证可靠性,但介电介质和Cu种子层之间的界面必须平滑,以实现高频电信号的低衰减。在这里,我们对我们开发的热固性电介质的表面进行紫外线改性,以实现在电介质上光滑和高粘性的种子层,而不是这些工艺。在UV修饰层的纳米级锚定效应下,电介质表面粗糙度(Ra)为265 nm,但电介质与Cu种子层之间的剥离强度为0.5 kN/m。由于紫外光修饰的界面光滑,微带线的归一化S21值比用2400 nm的Ra在50 GHz下通过Cu膜组装的微带线提高了29%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electroless Plating with UV Modification for Thermosetting Dielectric and Decay Suppression of High Frequency Transmission Property
Semiconductor packages for high-performance devices with printed circuit boards having multi-wiring layers such as FC-BGA have been attracting attention to realize ultrareliable and low-latency communications in 5G networking. Cu wirings for the package are usually fabricated by the semi-additive process (SAP) with the de-smear process and/or the modified semi-additive process (MSAP) by using Cu film with large surface roughness. Although a de-smear process and Cu film can obtain enough adhesion between dielectric and Cu seed layer by the anchoring effect to secure reliabilities, the interface between dielectric and Cu seed layer should be smooth to achieve low attenuation of electric signals at high frequencies. Here, instead of those processes, we applied UV modification for the surface of our developed thermosetting dielectric to realize a smooth and high-adhesive seed layer against the dielectric. We obtained .5 kN/m of peel strength between dielectric and Cu seed layer despite surface roughness (Ra) of dielectric being 265 nm by the nano-level anchoring effect at UV modified layer. Because of the smooth interface by UV modification, the normalized S21 value of micro-strip line was about 29% improved compared with that assembled through Cu film with Ra of 2,400 nm at 50 GHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microelectronics and Electronic Packaging
Journal of Microelectronics and Electronic Packaging Engineering-Electrical and Electronic Engineering
CiteScore
1.30
自引率
0.00%
发文量
5
期刊介绍: The International Microelectronics And Packaging Society (IMAPS) is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging technologies through professional education. The Society’s portfolio of technologies is disseminated through symposia, conferences, workshops, professional development courses and other efforts. IMAPS currently has more than 4,000 members in the United States and more than 4,000 international members around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信