随机矩阵乘积系数的贝里内界和局部极限定理

IF 1.1 2区 数学 Q1 MATHEMATICS
T. Dinh, Lucas Kaufmann, Hao Wu
{"title":"随机矩阵乘积系数的贝里内界和局部极限定理","authors":"T. Dinh, Lucas Kaufmann, Hao Wu","doi":"10.1017/s1474748022000561","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000561_inline1.png\" />\n\t\t<jats:tex-math>\n$\\mu $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be a probability measure on <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000561_inline2.png\" />\n\t\t<jats:tex-math>\n$\\mathrm {GL}_d(\\mathbb {R})$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, and denote by <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000561_inline3.png\" />\n\t\t<jats:tex-math>\n$S_n:= g_n \\cdots g_1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> the associated random matrix product, where <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000561_inline4.png\" />\n\t\t<jats:tex-math>\n$g_j$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> are i.i.d. with law <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000561_inline5.png\" />\n\t\t<jats:tex-math>\n$\\mu $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. Under the assumptions that <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000561_inline6.png\" />\n\t\t<jats:tex-math>\n$\\mu $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> has a finite exponential moment and generates a proximal and strongly irreducible semigroup, we prove a Berry–Esseen bound with the optimal rate <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000561_inline7.png\" />\n\t\t<jats:tex-math>\n$O(1/\\sqrt n)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> for the coefficients of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000561_inline8.png\" />\n\t\t<jats:tex-math>\n$S_n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, settling a long-standing question considered since the fundamental work of Guivarc’h and Raugi. The local limit theorem for the coefficients is also obtained, complementing a recent partial result of Grama, Quint and Xiao.</jats:p>","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"BERRY–ESSEEN BOUND AND LOCAL LIMIT THEOREM FOR THE COEFFICIENTS OF PRODUCTS OF RANDOM MATRICES\",\"authors\":\"T. Dinh, Lucas Kaufmann, Hao Wu\",\"doi\":\"10.1017/s1474748022000561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>Let <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748022000561_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\mu $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> be a probability measure on <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748022000561_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\mathrm {GL}_d(\\\\mathbb {R})$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, and denote by <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748022000561_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$S_n:= g_n \\\\cdots g_1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> the associated random matrix product, where <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748022000561_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$g_j$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> are i.i.d. with law <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748022000561_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\mu $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>. Under the assumptions that <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748022000561_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\mu $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> has a finite exponential moment and generates a proximal and strongly irreducible semigroup, we prove a Berry–Esseen bound with the optimal rate <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748022000561_inline7.png\\\" />\\n\\t\\t<jats:tex-math>\\n$O(1/\\\\sqrt n)$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> for the coefficients of <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748022000561_inline8.png\\\" />\\n\\t\\t<jats:tex-math>\\n$S_n$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, settling a long-standing question considered since the fundamental work of Guivarc’h and Raugi. The local limit theorem for the coefficients is also obtained, complementing a recent partial result of Grama, Quint and Xiao.</jats:p>\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748022000561\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748022000561","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

设$\mu $为$\mathrm {GL}_d(\mathbb {R})$上的概率测度,用$S_n:= g_n \cdots g_1$表示相关联的随机矩阵积,其中$g_j$为i.i.d,法则为$\mu $。在假设$\mu $具有有限指数矩并产生一个近端强不可约半群的情况下,我们证明了$S_n$的系数具有最优率$O(1/\sqrt n)$的Berry-Esseen界,从而解决了自Guivarc 'h和Raugi的基础工作以来一直被考虑的一个长期问题。得到了系数的局部极限定理,补充了Grama、Quint和Xiao最近的部分结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BERRY–ESSEEN BOUND AND LOCAL LIMIT THEOREM FOR THE COEFFICIENTS OF PRODUCTS OF RANDOM MATRICES
Let $\mu $ be a probability measure on $\mathrm {GL}_d(\mathbb {R})$ , and denote by $S_n:= g_n \cdots g_1$ the associated random matrix product, where $g_j$ are i.i.d. with law $\mu $ . Under the assumptions that $\mu $ has a finite exponential moment and generates a proximal and strongly irreducible semigroup, we prove a Berry–Esseen bound with the optimal rate $O(1/\sqrt n)$ for the coefficients of $S_n$ , settling a long-standing question considered since the fundamental work of Guivarc’h and Raugi. The local limit theorem for the coefficients is also obtained, complementing a recent partial result of Grama, Quint and Xiao.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信