{"title":"有限差分模式下径向基函数对流扩散反应方程的数值模拟及应用","authors":"R. Mollapourasl, M. Haghi, A. Heryudono","doi":"10.21314/jcf.2020.382","DOIUrl":null,"url":null,"abstract":"This paper develops two local mesh-free methods for designing stencil weights and spatial discretization, respectively, for parabolic partial differential equations (PDEs) of convection–diffusion–reaction type. These are known as the radial-basis-function generated finite-difference method and the Hermite finite-difference method. The convergence and stability of these schemes are investigated numerically using some examples in two and three dimensions with regularly and irregularly shaped domains. Then we consider the numerical pricing of European and American options under the Heston stochastic volatility model. The European option leads to the solution of a two-dimensional parabolic PDE, and the price of the American option is given by a linear complementarity problem with a two-dimensional parabolic PDE of convection–diffusion–reaction type. Then we use the operator splitting method to perform time-stepping after space discretization. The resulting linear systems of equations are well conditioned and sparse, and by numerical experiments we show that our numerical technique is fast and stable with respect to the change in the shape parameter of the radial basis function. Finally, numerical results are provided to illustrate the quality of approximation and to show how well our approach converges with the results presented in the literature.","PeriodicalId":51731,"journal":{"name":"Journal of Computational Finance","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Simulation and Applications of the Convection–Diffusion–Reaction Equation with the Radial Basis Function in a Finite-Difference Mode\",\"authors\":\"R. Mollapourasl, M. Haghi, A. Heryudono\",\"doi\":\"10.21314/jcf.2020.382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops two local mesh-free methods for designing stencil weights and spatial discretization, respectively, for parabolic partial differential equations (PDEs) of convection–diffusion–reaction type. These are known as the radial-basis-function generated finite-difference method and the Hermite finite-difference method. The convergence and stability of these schemes are investigated numerically using some examples in two and three dimensions with regularly and irregularly shaped domains. Then we consider the numerical pricing of European and American options under the Heston stochastic volatility model. The European option leads to the solution of a two-dimensional parabolic PDE, and the price of the American option is given by a linear complementarity problem with a two-dimensional parabolic PDE of convection–diffusion–reaction type. Then we use the operator splitting method to perform time-stepping after space discretization. The resulting linear systems of equations are well conditioned and sparse, and by numerical experiments we show that our numerical technique is fast and stable with respect to the change in the shape parameter of the radial basis function. Finally, numerical results are provided to illustrate the quality of approximation and to show how well our approach converges with the results presented in the literature.\",\"PeriodicalId\":51731,\"journal\":{\"name\":\"Journal of Computational Finance\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.21314/jcf.2020.382\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/jcf.2020.382","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Numerical Simulation and Applications of the Convection–Diffusion–Reaction Equation with the Radial Basis Function in a Finite-Difference Mode
This paper develops two local mesh-free methods for designing stencil weights and spatial discretization, respectively, for parabolic partial differential equations (PDEs) of convection–diffusion–reaction type. These are known as the radial-basis-function generated finite-difference method and the Hermite finite-difference method. The convergence and stability of these schemes are investigated numerically using some examples in two and three dimensions with regularly and irregularly shaped domains. Then we consider the numerical pricing of European and American options under the Heston stochastic volatility model. The European option leads to the solution of a two-dimensional parabolic PDE, and the price of the American option is given by a linear complementarity problem with a two-dimensional parabolic PDE of convection–diffusion–reaction type. Then we use the operator splitting method to perform time-stepping after space discretization. The resulting linear systems of equations are well conditioned and sparse, and by numerical experiments we show that our numerical technique is fast and stable with respect to the change in the shape parameter of the radial basis function. Finally, numerical results are provided to illustrate the quality of approximation and to show how well our approach converges with the results presented in the literature.
期刊介绍:
The Journal of Computational Finance is an international peer-reviewed journal dedicated to advancing knowledge in the area of financial mathematics. The journal is focused on the measurement, management and analysis of financial risk, and provides detailed insight into numerical and computational techniques in the pricing, hedging and risk management of financial instruments. The journal welcomes papers dealing with innovative computational techniques in the following areas: Numerical solutions of pricing equations: finite differences, finite elements, and spectral techniques in one and multiple dimensions. Simulation approaches in pricing and risk management: advances in Monte Carlo and quasi-Monte Carlo methodologies; new strategies for market factors simulation. Optimization techniques in hedging and risk management. Fundamental numerical analysis relevant to finance: effect of boundary treatments on accuracy; new discretization of time-series analysis. Developments in free-boundary problems in finance: alternative ways and numerical implications in American option pricing.