虾螯合仿生多细胞管的能量吸收性能

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Rui Liang, Na Liu, Xiang Liu, Tao Wei, Lirong Mo, Huanchao Huang, Christophe Bastien
{"title":"虾螯合仿生多细胞管的能量吸收性能","authors":"Rui Liang,&nbsp;Na Liu,&nbsp;Xiang Liu,&nbsp;Tao Wei,&nbsp;Lirong Mo,&nbsp;Huanchao Huang,&nbsp;Christophe Bastien","doi":"10.1007/s10338-023-00414-y","DOIUrl":null,"url":null,"abstract":"<div><p>This research introduced the design, analysis and optimization of bionic shrimp chela multi-cell tubes (BSCMTs) in bending by embedding an arthropod's microstructure inside a thin-walled square structure. A three-point impact bending finite element model was, in the first instance, correlated with physical tests and then modified to assess the energy absorption performance of bionic multi-cell tubes considering initial peak force, specific energy absorption and mean crushing force. Following a complex proportional assessment (COPRAS) approach and optimization phases, results demonstrated that the BSCMT with a W-shape section had the best energy absorption characteristics and should be considered in future as a possible contender for vehicle B-pillar structures that are subjected to bending and require excellent energy absorption properties to protect the occupants in high-speed impact collisions.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10338-023-00414-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Energy Absorption Performance of Bionic Multi-cell Tubes Inspired by Shrimp chela\",\"authors\":\"Rui Liang,&nbsp;Na Liu,&nbsp;Xiang Liu,&nbsp;Tao Wei,&nbsp;Lirong Mo,&nbsp;Huanchao Huang,&nbsp;Christophe Bastien\",\"doi\":\"10.1007/s10338-023-00414-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research introduced the design, analysis and optimization of bionic shrimp chela multi-cell tubes (BSCMTs) in bending by embedding an arthropod's microstructure inside a thin-walled square structure. A three-point impact bending finite element model was, in the first instance, correlated with physical tests and then modified to assess the energy absorption performance of bionic multi-cell tubes considering initial peak force, specific energy absorption and mean crushing force. Following a complex proportional assessment (COPRAS) approach and optimization phases, results demonstrated that the BSCMT with a W-shape section had the best energy absorption characteristics and should be considered in future as a possible contender for vehicle B-pillar structures that are subjected to bending and require excellent energy absorption properties to protect the occupants in high-speed impact collisions.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10338-023-00414-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-023-00414-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-023-00414-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过将节肢动物的微观结构嵌入薄壁方形结构中,介绍了仿生虾螯多细胞管(BSCMT)在弯曲过程中的设计、分析和优化。首先,将三点冲击弯曲有限元模型与物理测试相关联,然后对其进行修改,以评估仿生多细胞管在考虑初始峰值力、比能量吸收和平均压碎力的情况下的能量吸收性能。在复杂比例评估(COPRAS)方法和优化阶段之后,结果表明,具有W形截面的BSCMT具有最佳的能量吸收特性,未来应被视为车辆B柱结构的可能竞争者,这些B柱结构容易弯曲,需要优异的能量吸收性能来在高速碰撞中保护乘员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Energy Absorption Performance of Bionic Multi-cell Tubes Inspired by Shrimp chela

Energy Absorption Performance of Bionic Multi-cell Tubes Inspired by Shrimp chela

This research introduced the design, analysis and optimization of bionic shrimp chela multi-cell tubes (BSCMTs) in bending by embedding an arthropod's microstructure inside a thin-walled square structure. A three-point impact bending finite element model was, in the first instance, correlated with physical tests and then modified to assess the energy absorption performance of bionic multi-cell tubes considering initial peak force, specific energy absorption and mean crushing force. Following a complex proportional assessment (COPRAS) approach and optimization phases, results demonstrated that the BSCMT with a W-shape section had the best energy absorption characteristics and should be considered in future as a possible contender for vehicle B-pillar structures that are subjected to bending and require excellent energy absorption properties to protect the occupants in high-speed impact collisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信