Rui Liang, Na Liu, Xiang Liu, Tao Wei, Lirong Mo, Huanchao Huang, Christophe Bastien
{"title":"虾螯合仿生多细胞管的能量吸收性能","authors":"Rui Liang, Na Liu, Xiang Liu, Tao Wei, Lirong Mo, Huanchao Huang, Christophe Bastien","doi":"10.1007/s10338-023-00414-y","DOIUrl":null,"url":null,"abstract":"<div><p>This research introduced the design, analysis and optimization of bionic shrimp chela multi-cell tubes (BSCMTs) in bending by embedding an arthropod's microstructure inside a thin-walled square structure. A three-point impact bending finite element model was, in the first instance, correlated with physical tests and then modified to assess the energy absorption performance of bionic multi-cell tubes considering initial peak force, specific energy absorption and mean crushing force. Following a complex proportional assessment (COPRAS) approach and optimization phases, results demonstrated that the BSCMT with a W-shape section had the best energy absorption characteristics and should be considered in future as a possible contender for vehicle B-pillar structures that are subjected to bending and require excellent energy absorption properties to protect the occupants in high-speed impact collisions.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"36 5","pages":"754 - 762"},"PeriodicalIF":2.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10338-023-00414-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Energy Absorption Performance of Bionic Multi-cell Tubes Inspired by Shrimp chela\",\"authors\":\"Rui Liang, Na Liu, Xiang Liu, Tao Wei, Lirong Mo, Huanchao Huang, Christophe Bastien\",\"doi\":\"10.1007/s10338-023-00414-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research introduced the design, analysis and optimization of bionic shrimp chela multi-cell tubes (BSCMTs) in bending by embedding an arthropod's microstructure inside a thin-walled square structure. A three-point impact bending finite element model was, in the first instance, correlated with physical tests and then modified to assess the energy absorption performance of bionic multi-cell tubes considering initial peak force, specific energy absorption and mean crushing force. Following a complex proportional assessment (COPRAS) approach and optimization phases, results demonstrated that the BSCMT with a W-shape section had the best energy absorption characteristics and should be considered in future as a possible contender for vehicle B-pillar structures that are subjected to bending and require excellent energy absorption properties to protect the occupants in high-speed impact collisions.</p></div>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":\"36 5\",\"pages\":\"754 - 762\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10338-023-00414-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-023-00414-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-023-00414-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Energy Absorption Performance of Bionic Multi-cell Tubes Inspired by Shrimp chela
This research introduced the design, analysis and optimization of bionic shrimp chela multi-cell tubes (BSCMTs) in bending by embedding an arthropod's microstructure inside a thin-walled square structure. A three-point impact bending finite element model was, in the first instance, correlated with physical tests and then modified to assess the energy absorption performance of bionic multi-cell tubes considering initial peak force, specific energy absorption and mean crushing force. Following a complex proportional assessment (COPRAS) approach and optimization phases, results demonstrated that the BSCMT with a W-shape section had the best energy absorption characteristics and should be considered in future as a possible contender for vehicle B-pillar structures that are subjected to bending and require excellent energy absorption properties to protect the occupants in high-speed impact collisions.
期刊介绍:
Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics.
The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables