{"title":"在不同拓扑结构和异质性下,神经元雪崩动力学受峰值时间依赖的可塑性调控","authors":"Jiayi Yang, Peihua Feng, Ying Wu","doi":"10.1007/s11571-023-09966-8","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal avalanches, a critical state of network self-organization, have been widely observed in electrophysiological records at different signal levels and spatial scales of the brain, which has significant influence on information transmission and processing in the brain. In this paper, the collective behavior of neuron firing is studied based on Leaky Integrate-and-Fire model and we induce spike-timing-dependent plasticity (STDP) to update the connection weight through competition between adjacent neurons in different network topologies. The result shows that STDP can facilitate the synchronization of the network and increase the probability of large-scale neuron avalanche obviously. Moreover, both the structure of STDP and network connection density can affect the generation of avalanche critical states, specifically, learning rate has positive correlation effect on the slope of power-law distribution and time constant has negative correction on it. However, when we the increase of heterogeneity in network, STDP can only has obvious promotion in synchrony under suitable level of heterogeneity. And we find that the process of long-term potentiation is sensitive to the adjustment of time constant and learning rate, unlike long-term depression, which is only sensitive to learning rate in heterogeneity network. It is suggested that presented results could facilitate our understanding on synchronization in various neural networks under the effect of STDP learning rules.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143121/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neuronal avalanche dynamics regulated by spike-timing-dependent plasticity under different topologies and heterogeneities.\",\"authors\":\"Jiayi Yang, Peihua Feng, Ying Wu\",\"doi\":\"10.1007/s11571-023-09966-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuronal avalanches, a critical state of network self-organization, have been widely observed in electrophysiological records at different signal levels and spatial scales of the brain, which has significant influence on information transmission and processing in the brain. In this paper, the collective behavior of neuron firing is studied based on Leaky Integrate-and-Fire model and we induce spike-timing-dependent plasticity (STDP) to update the connection weight through competition between adjacent neurons in different network topologies. The result shows that STDP can facilitate the synchronization of the network and increase the probability of large-scale neuron avalanche obviously. Moreover, both the structure of STDP and network connection density can affect the generation of avalanche critical states, specifically, learning rate has positive correlation effect on the slope of power-law distribution and time constant has negative correction on it. However, when we the increase of heterogeneity in network, STDP can only has obvious promotion in synchrony under suitable level of heterogeneity. And we find that the process of long-term potentiation is sensitive to the adjustment of time constant and learning rate, unlike long-term depression, which is only sensitive to learning rate in heterogeneity network. It is suggested that presented results could facilitate our understanding on synchronization in various neural networks under the effect of STDP learning rules.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143121/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-023-09966-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09966-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Neuronal avalanche dynamics regulated by spike-timing-dependent plasticity under different topologies and heterogeneities.
Neuronal avalanches, a critical state of network self-organization, have been widely observed in electrophysiological records at different signal levels and spatial scales of the brain, which has significant influence on information transmission and processing in the brain. In this paper, the collective behavior of neuron firing is studied based on Leaky Integrate-and-Fire model and we induce spike-timing-dependent plasticity (STDP) to update the connection weight through competition between adjacent neurons in different network topologies. The result shows that STDP can facilitate the synchronization of the network and increase the probability of large-scale neuron avalanche obviously. Moreover, both the structure of STDP and network connection density can affect the generation of avalanche critical states, specifically, learning rate has positive correlation effect on the slope of power-law distribution and time constant has negative correction on it. However, when we the increase of heterogeneity in network, STDP can only has obvious promotion in synchrony under suitable level of heterogeneity. And we find that the process of long-term potentiation is sensitive to the adjustment of time constant and learning rate, unlike long-term depression, which is only sensitive to learning rate in heterogeneity network. It is suggested that presented results could facilitate our understanding on synchronization in various neural networks under the effect of STDP learning rules.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.