湿度和光调节氧诱导的脱水湖血球菌细胞活力损失

T. Roach, Alessandro Fambri, D. Ballesteros
{"title":"湿度和光调节氧诱导的脱水湖血球菌细胞活力损失","authors":"T. Roach, Alessandro Fambri, D. Ballesteros","doi":"10.3390/oxygen2040033","DOIUrl":null,"url":null,"abstract":"Haematoccocus lacustris (previously H. pluvialis) is a desiccation-tolerant unicellular freshwater green alga. During acclimation to desiccation, astaxanthin-rich lipid bodies and low-molecular-weight antioxidants (α-tocopherol, glutathione) accumulate, while the chloroplast area and chlorophyll contents decrease, which may facilitate desiccation tolerance by preventing damage mediated by reactive oxygen species (ROS). Here, we investigated the influence of moisture, light, oxygen, and temperature on redox homeostasis and cell longevity. Respiration and unbound freezable water were detectable in cells equilibrated to ≥90% relative humidity (RH), a threshold above which viability considerably shortened. At 92.5% RH and 21 °C, antioxidants depleted over days as cells lost viability, especially in an oxygen-rich atmosphere, supporting the role of ROS production in uncoupled respiration in viability loss. At 80% RH and 21 °C, redox homeostasis was maintained over weeks, and longevity was less influenced by oxygen. Light and oxygen was a lethal combination at 92.5% RH, under which pigments bleached, while in the dark only astaxanthin bleached. Viability positively correlated with glutathione concentrations across all treatments, while correlation with α-tocopherol was weaker, indicating limited viability loss from lipid peroxidation at 80% RH. In cells equilibrated to 50% RH, longevity and redox homeostasis showed strong temperature dependency, and viability was maintained at sub-zero temperatures for up to three years, revealing cryogenic storage to be an optimal strategy to store H. lacustris germplasm.","PeriodicalId":74387,"journal":{"name":"Oxygen (Basel, Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Humidity and Light Modulate Oxygen-Induced Viability Loss in Dehydrated Haematococcus lacustris Cells\",\"authors\":\"T. Roach, Alessandro Fambri, D. Ballesteros\",\"doi\":\"10.3390/oxygen2040033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Haematoccocus lacustris (previously H. pluvialis) is a desiccation-tolerant unicellular freshwater green alga. During acclimation to desiccation, astaxanthin-rich lipid bodies and low-molecular-weight antioxidants (α-tocopherol, glutathione) accumulate, while the chloroplast area and chlorophyll contents decrease, which may facilitate desiccation tolerance by preventing damage mediated by reactive oxygen species (ROS). Here, we investigated the influence of moisture, light, oxygen, and temperature on redox homeostasis and cell longevity. Respiration and unbound freezable water were detectable in cells equilibrated to ≥90% relative humidity (RH), a threshold above which viability considerably shortened. At 92.5% RH and 21 °C, antioxidants depleted over days as cells lost viability, especially in an oxygen-rich atmosphere, supporting the role of ROS production in uncoupled respiration in viability loss. At 80% RH and 21 °C, redox homeostasis was maintained over weeks, and longevity was less influenced by oxygen. Light and oxygen was a lethal combination at 92.5% RH, under which pigments bleached, while in the dark only astaxanthin bleached. Viability positively correlated with glutathione concentrations across all treatments, while correlation with α-tocopherol was weaker, indicating limited viability loss from lipid peroxidation at 80% RH. In cells equilibrated to 50% RH, longevity and redox homeostasis showed strong temperature dependency, and viability was maintained at sub-zero temperatures for up to three years, revealing cryogenic storage to be an optimal strategy to store H. lacustris germplasm.\",\"PeriodicalId\":74387,\"journal\":{\"name\":\"Oxygen (Basel, Switzerland)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxygen (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/oxygen2040033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxygen (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/oxygen2040033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

湖血藻是一种耐干燥的单细胞淡水绿藻。在对干燥的适应过程中,富含虾青素的脂质体和低分子量抗氧化剂(α-生育酚、谷胱甘肽)积累,而叶绿体面积和叶绿素含量减少,这可能通过防止活性氧介导的损伤来促进干燥耐受。在这里,我们研究了水分、光照、氧气和温度对氧化还原稳态和细胞寿命的影响。在平衡到≥90%相对湿度(RH)的细胞中可以检测到呼吸和未结合的可冷冻水,超过该阈值,活力显著缩短。在92.5%的相对湿度和21°C下,随着细胞失去活力,抗氧化剂会在几天内耗尽,尤其是在富氧环境中,这支持了ROS在活力丧失中非偶联呼吸中的作用。在80%RH和21°C下,氧化还原稳态维持数周,寿命受氧气影响较小。光和氧在92.5%的相对湿度下是致命的组合,在这种条件下颜料会漂白,而在黑暗中只有虾青素会漂白。在所有处理中,活力与谷胱甘肽浓度呈正相关,而与α-生育酚的相关性较弱,表明在80%RH下,脂质过氧化导致的活力损失有限。在50%相对湿度下平衡的细胞中,寿命和氧化还原稳态表现出强烈的温度依赖性,并且在零度以下的温度下保持活力长达三年,这表明低温储存是储存湖杨种质的最佳策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Humidity and Light Modulate Oxygen-Induced Viability Loss in Dehydrated Haematococcus lacustris Cells
Haematoccocus lacustris (previously H. pluvialis) is a desiccation-tolerant unicellular freshwater green alga. During acclimation to desiccation, astaxanthin-rich lipid bodies and low-molecular-weight antioxidants (α-tocopherol, glutathione) accumulate, while the chloroplast area and chlorophyll contents decrease, which may facilitate desiccation tolerance by preventing damage mediated by reactive oxygen species (ROS). Here, we investigated the influence of moisture, light, oxygen, and temperature on redox homeostasis and cell longevity. Respiration and unbound freezable water were detectable in cells equilibrated to ≥90% relative humidity (RH), a threshold above which viability considerably shortened. At 92.5% RH and 21 °C, antioxidants depleted over days as cells lost viability, especially in an oxygen-rich atmosphere, supporting the role of ROS production in uncoupled respiration in viability loss. At 80% RH and 21 °C, redox homeostasis was maintained over weeks, and longevity was less influenced by oxygen. Light and oxygen was a lethal combination at 92.5% RH, under which pigments bleached, while in the dark only astaxanthin bleached. Viability positively correlated with glutathione concentrations across all treatments, while correlation with α-tocopherol was weaker, indicating limited viability loss from lipid peroxidation at 80% RH. In cells equilibrated to 50% RH, longevity and redox homeostasis showed strong temperature dependency, and viability was maintained at sub-zero temperatures for up to three years, revealing cryogenic storage to be an optimal strategy to store H. lacustris germplasm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信