胚胎组织中的关键现象

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Camilla Autorino , Nicoletta I. Petridou
{"title":"胚胎组织中的关键现象","authors":"Camilla Autorino ,&nbsp;Nicoletta I. Petridou","doi":"10.1016/j.coisb.2022.100433","DOIUrl":null,"url":null,"abstract":"<div><p>The physics of critical points lies behind the organization of various complex systems, from molecules to ecosystems. Several functional benefits emerge when operating at the edge of a critical point, at <em>criticality</em>, potentially explaining the optimality of biological function. Here, we propose that introducing the concept of criticality in developmental biology may explain remarkable features of embryonic development, such as collective behavior and fitness. Recent interdisciplinary studies approached embryonic processes with statistical physics frameworks and revealed that biochemical and biomechanical processes of embryonic development resemble critical phenomena. We discuss those processes, including gene expression, cell differentiation, and tissue mechanics, and challenge if criticality has a beneficial function during embryonic organization.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310022000191/pdfft?md5=d218d6919cf5c5fa9eb056b4147f9763&pid=1-s2.0-S2452310022000191-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Critical phenomena in embryonic organization\",\"authors\":\"Camilla Autorino ,&nbsp;Nicoletta I. Petridou\",\"doi\":\"10.1016/j.coisb.2022.100433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The physics of critical points lies behind the organization of various complex systems, from molecules to ecosystems. Several functional benefits emerge when operating at the edge of a critical point, at <em>criticality</em>, potentially explaining the optimality of biological function. Here, we propose that introducing the concept of criticality in developmental biology may explain remarkable features of embryonic development, such as collective behavior and fitness. Recent interdisciplinary studies approached embryonic processes with statistical physics frameworks and revealed that biochemical and biomechanical processes of embryonic development resemble critical phenomena. We discuss those processes, including gene expression, cell differentiation, and tissue mechanics, and challenge if criticality has a beneficial function during embryonic organization.</p></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452310022000191/pdfft?md5=d218d6919cf5c5fa9eb056b4147f9763&pid=1-s2.0-S2452310022000191-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452310022000191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310022000191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

从分子到生态系统,各种复杂系统的组织背后都隐藏着临界点的物理学原理。当在临界点的边缘操作时,出现了几个功能上的好处,在临界状态下,潜在地解释了生物功能的最佳性。在这里,我们提出在发育生物学中引入临界性的概念可以解释胚胎发育的显著特征,如集体行为和适合度。最近的跨学科研究用统计物理框架来探讨胚胎过程,揭示了胚胎发育的生化和生物力学过程类似于临界现象。我们讨论了这些过程,包括基因表达、细胞分化和组织力学,并挑战临界是否在胚胎组织中具有有益的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical phenomena in embryonic organization

The physics of critical points lies behind the organization of various complex systems, from molecules to ecosystems. Several functional benefits emerge when operating at the edge of a critical point, at criticality, potentially explaining the optimality of biological function. Here, we propose that introducing the concept of criticality in developmental biology may explain remarkable features of embryonic development, such as collective behavior and fitness. Recent interdisciplinary studies approached embryonic processes with statistical physics frameworks and revealed that biochemical and biomechanical processes of embryonic development resemble critical phenomena. We discuss those processes, including gene expression, cell differentiation, and tissue mechanics, and challenge if criticality has a beneficial function during embryonic organization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信