{"title":"基于认知空间变换的网格细胞活动建模","authors":"Zhihui Zhang, Fengzhen Tang, Yiping Li, Xisheng Feng","doi":"10.1007/s11571-023-09972-w","DOIUrl":null,"url":null,"abstract":"<p><p>The grid cells in the medial entorhinal cortex are widely recognized as a critical component of spatial cognition within the entorhinal-hippocampal neuronal circuits. To account for the hexagonal patterns, several computational models have been proposed. However, there is still considerable debate regarding the interaction between grid cells and place cells. In response, we have developed a novel grid-cell computational model based on cognitive space transformation, which established a theoretical framework of the interaction between place cells and grid cells for encoding and transforming positions between the local frame and global frame. Our model not only can generate the firing patterns of the grid cells but also reproduces the biological experiment results about the grid-cell global representation of connected environments and supports the conjecture about the underlying reason. Moreover, our model provides new insights into how grid cells and place cells integrate external and self-motion cues.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143158/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modeling the grid cell activity based on cognitive space transformation.\",\"authors\":\"Zhihui Zhang, Fengzhen Tang, Yiping Li, Xisheng Feng\",\"doi\":\"10.1007/s11571-023-09972-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The grid cells in the medial entorhinal cortex are widely recognized as a critical component of spatial cognition within the entorhinal-hippocampal neuronal circuits. To account for the hexagonal patterns, several computational models have been proposed. However, there is still considerable debate regarding the interaction between grid cells and place cells. In response, we have developed a novel grid-cell computational model based on cognitive space transformation, which established a theoretical framework of the interaction between place cells and grid cells for encoding and transforming positions between the local frame and global frame. Our model not only can generate the firing patterns of the grid cells but also reproduces the biological experiment results about the grid-cell global representation of connected environments and supports the conjecture about the underlying reason. Moreover, our model provides new insights into how grid cells and place cells integrate external and self-motion cues.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143158/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-023-09972-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09972-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Modeling the grid cell activity based on cognitive space transformation.
The grid cells in the medial entorhinal cortex are widely recognized as a critical component of spatial cognition within the entorhinal-hippocampal neuronal circuits. To account for the hexagonal patterns, several computational models have been proposed. However, there is still considerable debate regarding the interaction between grid cells and place cells. In response, we have developed a novel grid-cell computational model based on cognitive space transformation, which established a theoretical framework of the interaction between place cells and grid cells for encoding and transforming positions between the local frame and global frame. Our model not only can generate the firing patterns of the grid cells but also reproduces the biological experiment results about the grid-cell global representation of connected environments and supports the conjecture about the underlying reason. Moreover, our model provides new insights into how grid cells and place cells integrate external and self-motion cues.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.