一般代数的弱Schreier扩张

IF 0.6 4区 数学 Q3 MATHEMATICS
Graham Manuell, Nelson Martins-Ferreira
{"title":"一般代数的弱Schreier扩张","authors":"Graham Manuell,&nbsp;Nelson Martins-Ferreira","doi":"10.1007/s00012-023-00823-7","DOIUrl":null,"url":null,"abstract":"<div><p>Weakly Schreier split extensions are a reasonably large, yet well-understood class of monoid extensions, which generalise some aspects of split extensions of groups. This short note provides a way to define and study similar classes of split extensions in general algebraic structures (parameterised by a term <span>\\(\\theta \\)</span>). These generalise weakly Schreier extensions of monoids, as well as general extensions of semi-abelian varieties (using the <span>\\(\\theta \\)</span> appearing in their syntactic characterisation). Restricting again to the case of monoids, a different choice of <span>\\(\\theta \\)</span> leads to a new class of monoid extensions, more general than the weakly Schreier split extensions.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-023-00823-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Weakly Schreier extensions for general algebras\",\"authors\":\"Graham Manuell,&nbsp;Nelson Martins-Ferreira\",\"doi\":\"10.1007/s00012-023-00823-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Weakly Schreier split extensions are a reasonably large, yet well-understood class of monoid extensions, which generalise some aspects of split extensions of groups. This short note provides a way to define and study similar classes of split extensions in general algebraic structures (parameterised by a term <span>\\\\(\\\\theta \\\\)</span>). These generalise weakly Schreier extensions of monoids, as well as general extensions of semi-abelian varieties (using the <span>\\\\(\\\\theta \\\\)</span> appearing in their syntactic characterisation). Restricting again to the case of monoids, a different choice of <span>\\\\(\\\\theta \\\\)</span> leads to a new class of monoid extensions, more general than the weakly Schreier split extensions.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00012-023-00823-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-023-00823-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-023-00823-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

弱Schreier分裂扩张是一类相当大但被很好地理解的单拟扩张,它推广了群的分裂扩张的一些方面。这个简短的注释提供了一种定义和研究一般代数结构中类似的分裂扩展类的方法(用术语\(\θ\)参数化)。这些推广了拟单群的弱Schreier扩展,以及半阿贝尔变体的一般扩展(使用在其句法表征中出现的\(\theta\))。再次限制在半群的情况下,对\(θ)的不同选择导致了一类新的半群扩展,比弱Schreier分裂扩展更普遍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Weakly Schreier extensions for general algebras

Weakly Schreier extensions for general algebras

Weakly Schreier split extensions are a reasonably large, yet well-understood class of monoid extensions, which generalise some aspects of split extensions of groups. This short note provides a way to define and study similar classes of split extensions in general algebraic structures (parameterised by a term \(\theta \)). These generalise weakly Schreier extensions of monoids, as well as general extensions of semi-abelian varieties (using the \(\theta \) appearing in their syntactic characterisation). Restricting again to the case of monoids, a different choice of \(\theta \) leads to a new class of monoid extensions, more general than the weakly Schreier split extensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信