Prof. Shin-ichiro M. Nomura, Ryo Shimizu, Dr. Richard James Archer, Dr. Gen Hayase, Prof. Taro Toyota, Prof. Richard Mayne, Prof. Andrew Adamatzky
{"title":"多细胞脂质隔室从多孔聚合物结构自发和驱动生长到毫米大小**","authors":"Prof. Shin-ichiro M. Nomura, Ryo Shimizu, Dr. Richard James Archer, Dr. Gen Hayase, Prof. Taro Toyota, Prof. Richard Mayne, Prof. Andrew Adamatzky","doi":"10.1002/syst.202200006","DOIUrl":null,"url":null,"abstract":"<p>This report describes a method to obtain multicellular shaped compartments made by lipids growing from a sponge-like porous structure. Each compartment is several tens of micrometers in diameter and separated by membranes comprised of phospholipid and amphipathic molecules. The multi-compartment structure spontaneously grew to a millimeter scale, driven by an ionic concentration difference between the interior and exterior environments of the sponge. These compartments can also easily incorporate hydrophilic species as a well as smaller materials such as liposomes. Additionally, we showed that mechanical squeezing of the sponge was also effective in producing multicellular bodies. These simple methods to obtain large-scale multicellular compartment of lipid membrane will help future designs and trials of chemical communications on artificial cells.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200006","citationCount":"3","resultStr":"{\"title\":\"Spontaneous and Driven Growth of Multicellular Lipid Compartments to Millimeter Size from Porous Polymer Structures**\",\"authors\":\"Prof. Shin-ichiro M. Nomura, Ryo Shimizu, Dr. Richard James Archer, Dr. Gen Hayase, Prof. Taro Toyota, Prof. Richard Mayne, Prof. Andrew Adamatzky\",\"doi\":\"10.1002/syst.202200006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This report describes a method to obtain multicellular shaped compartments made by lipids growing from a sponge-like porous structure. Each compartment is several tens of micrometers in diameter and separated by membranes comprised of phospholipid and amphipathic molecules. The multi-compartment structure spontaneously grew to a millimeter scale, driven by an ionic concentration difference between the interior and exterior environments of the sponge. These compartments can also easily incorporate hydrophilic species as a well as smaller materials such as liposomes. Additionally, we showed that mechanical squeezing of the sponge was also effective in producing multicellular bodies. These simple methods to obtain large-scale multicellular compartment of lipid membrane will help future designs and trials of chemical communications on artificial cells.</p>\",\"PeriodicalId\":72566,\"journal\":{\"name\":\"ChemSystemsChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200006\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSystemsChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/syst.202200006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSystemsChem","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/syst.202200006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Spontaneous and Driven Growth of Multicellular Lipid Compartments to Millimeter Size from Porous Polymer Structures**
This report describes a method to obtain multicellular shaped compartments made by lipids growing from a sponge-like porous structure. Each compartment is several tens of micrometers in diameter and separated by membranes comprised of phospholipid and amphipathic molecules. The multi-compartment structure spontaneously grew to a millimeter scale, driven by an ionic concentration difference between the interior and exterior environments of the sponge. These compartments can also easily incorporate hydrophilic species as a well as smaller materials such as liposomes. Additionally, we showed that mechanical squeezing of the sponge was also effective in producing multicellular bodies. These simple methods to obtain large-scale multicellular compartment of lipid membrane will help future designs and trials of chemical communications on artificial cells.