基于降阶自抗扰控制器的设计与应用

IF 2.5 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Safiullah, Y. V. Hote
{"title":"基于降阶自抗扰控制器的设计与应用","authors":"Safiullah, Y. V. Hote","doi":"10.1080/02564602.2023.2165178","DOIUrl":null,"url":null,"abstract":"Active disturbance rejection control (ADRC) has emerged as a well-addressed controller design technique in recent years. It is a suitable replacement for the error-based feedback PID controller design approaches. The ADRC constitutes two controller design techniques: linear active disturbance rejection control (LADRC) and generalized active disturbance rejection control (GADRC). The LADRC design approach requires minimal information about the plant, while in the GADRC approach, detailed information about the plant is needed. For higher-order plants, the design of ADRC controllers and extended state observers may be pretty complex and costlier. So, the performance analysis of the higher order plant becomes difficult. Therefore, to make the controller simpler, it is always advantageous to reduce the controller size. This paper proposes reduced order linear active disturbance rejection control (ROLADRC), and reduced order generalized active disturbance rejection control (ROGADRC) techniques instead of full-order LADRC and GADRC approaches. The stability equation method (SEM) and other widespread model order reduction (MOR) methods are utilized to reduce the order of the plant. Further, ROLADRC and ROGADRC are compared with existing control techniques in the literature. The effectiveness of the proposed scheme is tested on the sun tracker system (STS) for position control and power systems for load frequency control (LFC).","PeriodicalId":13252,"journal":{"name":"IETE Technical Review","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reduced Order Based Active Disturbance Rejection Controller Design with Applications\",\"authors\":\"Safiullah, Y. V. Hote\",\"doi\":\"10.1080/02564602.2023.2165178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active disturbance rejection control (ADRC) has emerged as a well-addressed controller design technique in recent years. It is a suitable replacement for the error-based feedback PID controller design approaches. The ADRC constitutes two controller design techniques: linear active disturbance rejection control (LADRC) and generalized active disturbance rejection control (GADRC). The LADRC design approach requires minimal information about the plant, while in the GADRC approach, detailed information about the plant is needed. For higher-order plants, the design of ADRC controllers and extended state observers may be pretty complex and costlier. So, the performance analysis of the higher order plant becomes difficult. Therefore, to make the controller simpler, it is always advantageous to reduce the controller size. This paper proposes reduced order linear active disturbance rejection control (ROLADRC), and reduced order generalized active disturbance rejection control (ROGADRC) techniques instead of full-order LADRC and GADRC approaches. The stability equation method (SEM) and other widespread model order reduction (MOR) methods are utilized to reduce the order of the plant. Further, ROLADRC and ROGADRC are compared with existing control techniques in the literature. The effectiveness of the proposed scheme is tested on the sun tracker system (STS) for position control and power systems for load frequency control (LFC).\",\"PeriodicalId\":13252,\"journal\":{\"name\":\"IETE Technical Review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IETE Technical Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/02564602.2023.2165178\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IETE Technical Review","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/02564602.2023.2165178","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced Order Based Active Disturbance Rejection Controller Design with Applications
Active disturbance rejection control (ADRC) has emerged as a well-addressed controller design technique in recent years. It is a suitable replacement for the error-based feedback PID controller design approaches. The ADRC constitutes two controller design techniques: linear active disturbance rejection control (LADRC) and generalized active disturbance rejection control (GADRC). The LADRC design approach requires minimal information about the plant, while in the GADRC approach, detailed information about the plant is needed. For higher-order plants, the design of ADRC controllers and extended state observers may be pretty complex and costlier. So, the performance analysis of the higher order plant becomes difficult. Therefore, to make the controller simpler, it is always advantageous to reduce the controller size. This paper proposes reduced order linear active disturbance rejection control (ROLADRC), and reduced order generalized active disturbance rejection control (ROGADRC) techniques instead of full-order LADRC and GADRC approaches. The stability equation method (SEM) and other widespread model order reduction (MOR) methods are utilized to reduce the order of the plant. Further, ROLADRC and ROGADRC are compared with existing control techniques in the literature. The effectiveness of the proposed scheme is tested on the sun tracker system (STS) for position control and power systems for load frequency control (LFC).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IETE Technical Review
IETE Technical Review 工程技术-电信学
CiteScore
5.70
自引率
4.20%
发文量
48
审稿时长
9 months
期刊介绍: IETE Technical Review is a world leading journal which publishes state-of-the-art review papers and in-depth tutorial papers on current and futuristic technologies in the area of electronics and telecommunications engineering. We also publish original research papers which demonstrate significant advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信