Zichong Lyu, D. Pons, Gilbert Palliparampil, Yilei Zhang
{"title":"基于离散事件模拟和聚类分析的城市货运物流优化:一种随机双层枢纽轮辐结构方法","authors":"Zichong Lyu, D. Pons, Gilbert Palliparampil, Yilei Zhang","doi":"10.3390/smartcities6050107","DOIUrl":null,"url":null,"abstract":"The transport of freight involves numerous intermediate steps, such as freight consolidation, truck allocation, and routing, all of which exhibit high day-to-day variability. On the delivery side, drivers usually cover specific geographic regions, also known as clusters, to optimise operational efficiency. A crucial aspect of this process is the effective allocation of resources to match business requirements. The discrete-event simulation (DES) technique excels in replicating intricate real-world operations and can integrate a multitude of stochastic variables, thereby enhancing its utility for decision making. The objective of this study is to formulate a routing architecture that integrates with a DES model to capture the variability in freight operations. This integration is intended to provide robust support for informed decision-making processes. A two-tier hub-and-spoke (H&S) architecture was proposed to simulate stochastic routing for the truck fleet, which provided insights into travel distance and time for cluster-based delivery. Real industry data were employed in geographic information systems (GISs) to apply the density-based spatial clustering of applications with noise (DBSCAN) clustering method to identify customer clusters and establish a truck plan based on freight demand and truck capacity. This clustering analysis and simulation approach can serve as a planning tool for freight logistics companies and distributors to optimise their resource utilisation and operational efficiency, and the findings may be applied to develop plans for new regions with customer locations and freight demands. The original contribution of this study is the integration of variable last-mile routing and an operations model for freight decision making.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimising Urban Freight Logistics Using Discrete-Event Simulation and Cluster Analysis: A Stochastic Two-Tier Hub-and-Spoke Architecture Approach\",\"authors\":\"Zichong Lyu, D. Pons, Gilbert Palliparampil, Yilei Zhang\",\"doi\":\"10.3390/smartcities6050107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transport of freight involves numerous intermediate steps, such as freight consolidation, truck allocation, and routing, all of which exhibit high day-to-day variability. On the delivery side, drivers usually cover specific geographic regions, also known as clusters, to optimise operational efficiency. A crucial aspect of this process is the effective allocation of resources to match business requirements. The discrete-event simulation (DES) technique excels in replicating intricate real-world operations and can integrate a multitude of stochastic variables, thereby enhancing its utility for decision making. The objective of this study is to formulate a routing architecture that integrates with a DES model to capture the variability in freight operations. This integration is intended to provide robust support for informed decision-making processes. A two-tier hub-and-spoke (H&S) architecture was proposed to simulate stochastic routing for the truck fleet, which provided insights into travel distance and time for cluster-based delivery. Real industry data were employed in geographic information systems (GISs) to apply the density-based spatial clustering of applications with noise (DBSCAN) clustering method to identify customer clusters and establish a truck plan based on freight demand and truck capacity. This clustering analysis and simulation approach can serve as a planning tool for freight logistics companies and distributors to optimise their resource utilisation and operational efficiency, and the findings may be applied to develop plans for new regions with customer locations and freight demands. The original contribution of this study is the integration of variable last-mile routing and an operations model for freight decision making.\",\"PeriodicalId\":34482,\"journal\":{\"name\":\"Smart Cities\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Cities\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/smartcities6050107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Cities","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/smartcities6050107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimising Urban Freight Logistics Using Discrete-Event Simulation and Cluster Analysis: A Stochastic Two-Tier Hub-and-Spoke Architecture Approach
The transport of freight involves numerous intermediate steps, such as freight consolidation, truck allocation, and routing, all of which exhibit high day-to-day variability. On the delivery side, drivers usually cover specific geographic regions, also known as clusters, to optimise operational efficiency. A crucial aspect of this process is the effective allocation of resources to match business requirements. The discrete-event simulation (DES) technique excels in replicating intricate real-world operations and can integrate a multitude of stochastic variables, thereby enhancing its utility for decision making. The objective of this study is to formulate a routing architecture that integrates with a DES model to capture the variability in freight operations. This integration is intended to provide robust support for informed decision-making processes. A two-tier hub-and-spoke (H&S) architecture was proposed to simulate stochastic routing for the truck fleet, which provided insights into travel distance and time for cluster-based delivery. Real industry data were employed in geographic information systems (GISs) to apply the density-based spatial clustering of applications with noise (DBSCAN) clustering method to identify customer clusters and establish a truck plan based on freight demand and truck capacity. This clustering analysis and simulation approach can serve as a planning tool for freight logistics companies and distributors to optimise their resource utilisation and operational efficiency, and the findings may be applied to develop plans for new regions with customer locations and freight demands. The original contribution of this study is the integration of variable last-mile routing and an operations model for freight decision making.
期刊介绍:
Smart Cities (ISSN 2624-6511) provides an advanced forum for the dissemination of information on the science and technology of smart cities, publishing reviews, regular research papers (articles) and communications in all areas of research concerning smart cities. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible, with no restriction on the maximum length of the papers published so that all experimental results can be reproduced.