叶状流形上向量束中的F−平面结构

Q3 Mathematics
C. Apreutesei
{"title":"叶状流形上向量束中的F−平面结构","authors":"C. Apreutesei","doi":"10.37394/23206.2023.22.63","DOIUrl":null,"url":null,"abstract":": We give the definition of the families of F − flat structures and F − flat connections in vector bundles over F − foliated manifolds. Essential: existence of a F − flat structure is equivalent to the existence of a F − flat connection. Let { λ ξ } be a family of subbundles of a vector bundle ξ . There exists a family of F − flat structure { λ Λ } in ξ , relative at λ ξ , if and only if exists a family of F − flat connections { λ ∇} in ξ (Theorem III.5). F − flat structures (Theorem III.1), and integrable F − flat structures (Theorem III.5), are considered. Finally, integrable Γ − structure and F − flat structures on total space of a vector bundle are presented (Theorem IV.1).","PeriodicalId":55878,"journal":{"name":"WSEAS Transactions on Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On F−flat Structures in Vector Bundles Over Foliated Manifolds\",\"authors\":\"C. Apreutesei\",\"doi\":\"10.37394/23206.2023.22.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": We give the definition of the families of F − flat structures and F − flat connections in vector bundles over F − foliated manifolds. Essential: existence of a F − flat structure is equivalent to the existence of a F − flat connection. Let { λ ξ } be a family of subbundles of a vector bundle ξ . There exists a family of F − flat structure { λ Λ } in ξ , relative at λ ξ , if and only if exists a family of F − flat connections { λ ∇} in ξ (Theorem III.5). F − flat structures (Theorem III.1), and integrable F − flat structures (Theorem III.5), are considered. Finally, integrable Γ − structure and F − flat structures on total space of a vector bundle are presented (Theorem IV.1).\",\"PeriodicalId\":55878,\"journal\":{\"name\":\"WSEAS Transactions on Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23206.2023.22.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23206.2023.22.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

给出了叶形流形上向量束中的平面结构族和平面连接族的定义。要旨:一个F -平坦结构的存在等价于一个F -平坦连接的存在。设{λ ξ}是向量束ξ的一组子束。当且仅当在ξ上存在F−平面连接族{λ∇}时,存在λ ξ上相对于λ ξ的F−平面结构族{λ Λ}(定理III.5)。考虑了F−平面结构(定理III.1)和可积F−平面结构(定理III.5)。最后,给出了向量束总空间上的可积Γ -结构和F -平面结构(定理IV.1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On F−flat Structures in Vector Bundles Over Foliated Manifolds
: We give the definition of the families of F − flat structures and F − flat connections in vector bundles over F − foliated manifolds. Essential: existence of a F − flat structure is equivalent to the existence of a F − flat connection. Let { λ ξ } be a family of subbundles of a vector bundle ξ . There exists a family of F − flat structure { λ Λ } in ξ , relative at λ ξ , if and only if exists a family of F − flat connections { λ ∇} in ξ (Theorem III.5). F − flat structures (Theorem III.1), and integrable F − flat structures (Theorem III.5), are considered. Finally, integrable Γ − structure and F − flat structures on total space of a vector bundle are presented (Theorem IV.1).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Mathematics
WSEAS Transactions on Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
93
期刊介绍: WSEAS Transactions on Mathematics publishes original research papers relating to applied and theoretical mathematics. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with linear algebra, numerical analysis, differential equations, statistics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信