种子分类的迁移学习方法:以野生植物为例

IF 3.7 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nehad M. Ibrahim, D. Gabr, Atta Rahman, Dhiaa Musleh, Dania Alkhulaifi, Mariam Alkharraa
{"title":"种子分类的迁移学习方法:以野生植物为例","authors":"Nehad M. Ibrahim, D. Gabr, Atta Rahman, Dhiaa Musleh, Dania Alkhulaifi, Mariam Alkharraa","doi":"10.3390/bdcc7030128","DOIUrl":null,"url":null,"abstract":"Plant taxonomy is the scientific study of the classification and naming of various plant species. It is a branch of biology that aims to categorize and organize the diverse variety of plant life on earth. Traditionally, plant taxonomy has been performed using morphological and anatomical characteristics, such as leaf shape, flower structure, and seed and fruit characters. Artificial intelligence (AI), machine learning, and especially deep learning can also play an instrumental role in plant taxonomy by automating the process of categorizing plant species based on the available features. This study investigated transfer learning techniques to analyze images of plants and extract features that can be used to cluster the species hierarchically using the k-means clustering algorithm. Several pretrained deep learning models were employed and evaluated. In this regard, two separate datasets were used in the study comprising of seed images of wild plants collected from Egypt. Extensive experiments using the transfer learning method (DenseNet201) demonstrated that the proposed methods achieved superior accuracy compared to traditional methods with the highest accuracy of 93% and F1-score and area under the curve (AUC) of 95%, respectively. That is considerable in contrast to the state-of-the-art approaches in the literature.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Transfer Learning Approach to Seed Taxonomy: A Wild Plant Case Study\",\"authors\":\"Nehad M. Ibrahim, D. Gabr, Atta Rahman, Dhiaa Musleh, Dania Alkhulaifi, Mariam Alkharraa\",\"doi\":\"10.3390/bdcc7030128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plant taxonomy is the scientific study of the classification and naming of various plant species. It is a branch of biology that aims to categorize and organize the diverse variety of plant life on earth. Traditionally, plant taxonomy has been performed using morphological and anatomical characteristics, such as leaf shape, flower structure, and seed and fruit characters. Artificial intelligence (AI), machine learning, and especially deep learning can also play an instrumental role in plant taxonomy by automating the process of categorizing plant species based on the available features. This study investigated transfer learning techniques to analyze images of plants and extract features that can be used to cluster the species hierarchically using the k-means clustering algorithm. Several pretrained deep learning models were employed and evaluated. In this regard, two separate datasets were used in the study comprising of seed images of wild plants collected from Egypt. Extensive experiments using the transfer learning method (DenseNet201) demonstrated that the proposed methods achieved superior accuracy compared to traditional methods with the highest accuracy of 93% and F1-score and area under the curve (AUC) of 95%, respectively. That is considerable in contrast to the state-of-the-art approaches in the literature.\",\"PeriodicalId\":36397,\"journal\":{\"name\":\"Big Data and Cognitive Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/bdcc7030128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc7030128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

摘要

植物分类学是对各种植物种类进行分类和命名的科学研究。它是生物学的一个分支,旨在对地球上各种各样的植物进行分类和组织。传统上,植物分类是利用形态学和解剖学特征,如叶片形状、花结构、种子和果实特征来进行的。人工智能(AI),机器学习,特别是深度学习也可以在植物分类中发挥重要作用,通过基于可用特征对植物物种进行自动化分类。本研究研究了迁移学习技术来分析植物图像,并提取可用于使用k-means聚类算法分层聚类的物种特征。使用并评估了几个预训练的深度学习模型。在这方面,研究中使用了两个独立的数据集,包括从埃及收集的野生植物种子图像。使用迁移学习方法(DenseNet201)进行的大量实验表明,与传统方法相比,所提出的方法具有更高的准确率,最高准确率为93%,f1分数和曲线下面积(AUC)分别为95%。与文献中最先进的方法相比,这是相当可观的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer Learning Approach to Seed Taxonomy: A Wild Plant Case Study
Plant taxonomy is the scientific study of the classification and naming of various plant species. It is a branch of biology that aims to categorize and organize the diverse variety of plant life on earth. Traditionally, plant taxonomy has been performed using morphological and anatomical characteristics, such as leaf shape, flower structure, and seed and fruit characters. Artificial intelligence (AI), machine learning, and especially deep learning can also play an instrumental role in plant taxonomy by automating the process of categorizing plant species based on the available features. This study investigated transfer learning techniques to analyze images of plants and extract features that can be used to cluster the species hierarchically using the k-means clustering algorithm. Several pretrained deep learning models were employed and evaluated. In this regard, two separate datasets were used in the study comprising of seed images of wild plants collected from Egypt. Extensive experiments using the transfer learning method (DenseNet201) demonstrated that the proposed methods achieved superior accuracy compared to traditional methods with the highest accuracy of 93% and F1-score and area under the curve (AUC) of 95%, respectively. That is considerable in contrast to the state-of-the-art approaches in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data and Cognitive Computing
Big Data and Cognitive Computing Business, Management and Accounting-Management Information Systems
CiteScore
7.10
自引率
8.10%
发文量
128
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信