{"title":"交通预测中的土地利用不确定性","authors":"H. Ševčíková, Brice G. Nichols","doi":"10.5198/JTLU.2021.1853","DOIUrl":null,"url":null,"abstract":"Using an integrated land use and travel model system implemented for the Puget Sound region in Washington state, a Bayesian Melding technique is applied to represent variations in land use outcomes, and is propagated into travel choices across a multi-year agent-based simulation. A scenario is considered where zoned capacity is increased around light rail stations. Samples are drawn from the posterior distribution of households to generate travel model inputs. They allow for propagation of land use uncertainty into travel choices, which are themselves assessed for uncertainty by comparing against observed data. Resulting travel measures of zonal vehicle miles traveled (VMT) per capita and light rail station boardings indicate the importance of comparing distributions rather than point forecasts. Results suggest decreased VMT per capita in zones near light rail stations and increased boardings at certain stations with existing development, and less significant impacts around stations with lower initial development capacity. In many cases, individual point level comparisons of scenarios would lead to very different conclusions. Altogether, this finding adds to a line of work demonstrating the policy value of incorporating uncertainty in integrated models and provides a method for assessing these variations in a systematic way.","PeriodicalId":47271,"journal":{"name":"Journal of Transport and Land Use","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Land use uncertainty in transportation forecast\",\"authors\":\"H. Ševčíková, Brice G. Nichols\",\"doi\":\"10.5198/JTLU.2021.1853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using an integrated land use and travel model system implemented for the Puget Sound region in Washington state, a Bayesian Melding technique is applied to represent variations in land use outcomes, and is propagated into travel choices across a multi-year agent-based simulation. A scenario is considered where zoned capacity is increased around light rail stations. Samples are drawn from the posterior distribution of households to generate travel model inputs. They allow for propagation of land use uncertainty into travel choices, which are themselves assessed for uncertainty by comparing against observed data. Resulting travel measures of zonal vehicle miles traveled (VMT) per capita and light rail station boardings indicate the importance of comparing distributions rather than point forecasts. Results suggest decreased VMT per capita in zones near light rail stations and increased boardings at certain stations with existing development, and less significant impacts around stations with lower initial development capacity. In many cases, individual point level comparisons of scenarios would lead to very different conclusions. Altogether, this finding adds to a line of work demonstrating the policy value of incorporating uncertainty in integrated models and provides a method for assessing these variations in a systematic way.\",\"PeriodicalId\":47271,\"journal\":{\"name\":\"Journal of Transport and Land Use\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Transport and Land Use\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5198/JTLU.2021.1853\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transport and Land Use","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5198/JTLU.2021.1853","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Using an integrated land use and travel model system implemented for the Puget Sound region in Washington state, a Bayesian Melding technique is applied to represent variations in land use outcomes, and is propagated into travel choices across a multi-year agent-based simulation. A scenario is considered where zoned capacity is increased around light rail stations. Samples are drawn from the posterior distribution of households to generate travel model inputs. They allow for propagation of land use uncertainty into travel choices, which are themselves assessed for uncertainty by comparing against observed data. Resulting travel measures of zonal vehicle miles traveled (VMT) per capita and light rail station boardings indicate the importance of comparing distributions rather than point forecasts. Results suggest decreased VMT per capita in zones near light rail stations and increased boardings at certain stations with existing development, and less significant impacts around stations with lower initial development capacity. In many cases, individual point level comparisons of scenarios would lead to very different conclusions. Altogether, this finding adds to a line of work demonstrating the policy value of incorporating uncertainty in integrated models and provides a method for assessing these variations in a systematic way.
期刊介绍:
The Journal of Transport and Land Usepublishes original interdisciplinary papers on the interaction of transport and land use. Domains include: engineering, planning, modeling, behavior, economics, geography, regional science, sociology, architecture and design, network science, and complex systems. Papers reporting innovative methodologies, original data, and new empirical findings are especially encouraged.