自动论证挖掘与立场情绪的作用

IF 0.6 Q3 COMMUNICATION
Manfred Stede
{"title":"自动论证挖掘与立场情绪的作用","authors":"Manfred Stede","doi":"10.1075/jaic.00006.ste","DOIUrl":null,"url":null,"abstract":"Abstract Argumentation mining is a subfield of Computational Linguistics that aims (primarily) at automatically finding arguments and their structural components in natural language text. We provide a short introduction to this field, intended for an audience with a limited computational background. After explaining the subtasks involved in this problem of deriving the structure of arguments, we describe two other applications that are popular in computational linguistics: sentiment analysis and stance detection. From the linguistic viewpoint, they concern the semantics of evaluation in language. In the final part of the paper, we briefly examine the roles that these two tasks play in argumentation mining, both in current practice, and in possible future systems.","PeriodicalId":41908,"journal":{"name":"Journal of Argumentation in Context","volume":"9 1","pages":"19-41"},"PeriodicalIF":0.6000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Automatic argumentation mining and the role of stance and sentiment\",\"authors\":\"Manfred Stede\",\"doi\":\"10.1075/jaic.00006.ste\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Argumentation mining is a subfield of Computational Linguistics that aims (primarily) at automatically finding arguments and their structural components in natural language text. We provide a short introduction to this field, intended for an audience with a limited computational background. After explaining the subtasks involved in this problem of deriving the structure of arguments, we describe two other applications that are popular in computational linguistics: sentiment analysis and stance detection. From the linguistic viewpoint, they concern the semantics of evaluation in language. In the final part of the paper, we briefly examine the roles that these two tasks play in argumentation mining, both in current practice, and in possible future systems.\",\"PeriodicalId\":41908,\"journal\":{\"name\":\"Journal of Argumentation in Context\",\"volume\":\"9 1\",\"pages\":\"19-41\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Argumentation in Context\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1075/jaic.00006.ste\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMMUNICATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Argumentation in Context","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1075/jaic.00006.ste","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 10

摘要

摘要论证挖掘是计算语言学的一个子领域,其目的(主要)是自动发现自然语言文本中的论证及其结构成分。我们为计算背景有限的观众提供了该领域的简短介绍。在解释了推导论点结构这一问题中涉及的子任务后,我们描述了计算语言学中流行的另外两个应用:情绪分析和立场检测。从语言学的角度来看,它们关注语言评价的语义问题。在论文的最后部分,我们简要地考察了这两项任务在论证挖掘中所扮演的角色,无论是在当前的实践中,还是在未来可能的系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic argumentation mining and the role of stance and sentiment
Abstract Argumentation mining is a subfield of Computational Linguistics that aims (primarily) at automatically finding arguments and their structural components in natural language text. We provide a short introduction to this field, intended for an audience with a limited computational background. After explaining the subtasks involved in this problem of deriving the structure of arguments, we describe two other applications that are popular in computational linguistics: sentiment analysis and stance detection. From the linguistic viewpoint, they concern the semantics of evaluation in language. In the final part of the paper, we briefly examine the roles that these two tasks play in argumentation mining, both in current practice, and in possible future systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
12.50%
发文量
16
期刊介绍: The Journal of Argumentation in Context aims to publish high-quality papers about the role of argumentation in the various kinds of argumentative practices that have come into being in social life. These practices include, for instance, political, legal, medical, financial, commercial, academic, educational, problem-solving, and interpersonal communication. In all cases certain aspects of such practices will be analyzed from the perspective of argumentation theory with a view of gaining a better understanding of certain vital characteristics of these practices. This means that the journal has an empirical orientation and concentrates on real-life argumentation but is at the same time out to publish only papers that are informed by relevant insights from argumentation theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信