载瑞格列奈纳米颗粒黏附性能的改进:基于机器学习方法的数学建模

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
Nader Namazi
{"title":"载瑞格列奈纳米颗粒黏附性能的改进:基于机器学习方法的数学建模","authors":"Nader Namazi","doi":"10.22146/ijc.82031","DOIUrl":null,"url":null,"abstract":"This research work aims to develop a modified repaglinide-loaded chitosan-ethyl cellulose nanoparticles (RPG-ECSNPs) as a novel sustained-release dosage form with improved mucoadhesive properties using an emulsification solvent-evaporation technique. The RPG-ECSNPs with different particle sizes were prepared from various polymers containing ethyl cellulose (EC) as the internal phase and chitosan (CS) as the external phase, and the use of surfactants, including Tween 80 and poloxamer 188 as emulsifiers. In vitro drug release, drug loading amount, and entrapment efficiency have been influenced by changes in the concentrations of CS and EC. The mean droplet size and zeta potential of RPG-ECSNPs were 213 ± 8.5 nm and 16.4 ± 2.4 mV, respectively. The optimized formulation's entrapment efficiency was 66 ± 2.3%, and drug loading was 7.9 ± 1.65%. The release profile was significantly higher in PBS (90%) than in diluted hydrochloric acid (30%) during 24 h of the study. The mucoadhesive function of the particles was examined in vitro using part of rat intestines. The highest adhesive % was observed for the chitosan-coated NPs. No adhesive properties were noticed for chitosan-free NPs (P-value > 0.05). This indicated that ECSNPs can be successfully utilized for sustained and controlled drug delivery of RPG through the GIT.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Mucoadhesive Properties of Repaglinide-Loaded Nanoparticles: Mathematical Modelling through Machine Learning-Based Approach\",\"authors\":\"Nader Namazi\",\"doi\":\"10.22146/ijc.82031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research work aims to develop a modified repaglinide-loaded chitosan-ethyl cellulose nanoparticles (RPG-ECSNPs) as a novel sustained-release dosage form with improved mucoadhesive properties using an emulsification solvent-evaporation technique. The RPG-ECSNPs with different particle sizes were prepared from various polymers containing ethyl cellulose (EC) as the internal phase and chitosan (CS) as the external phase, and the use of surfactants, including Tween 80 and poloxamer 188 as emulsifiers. In vitro drug release, drug loading amount, and entrapment efficiency have been influenced by changes in the concentrations of CS and EC. The mean droplet size and zeta potential of RPG-ECSNPs were 213 ± 8.5 nm and 16.4 ± 2.4 mV, respectively. The optimized formulation's entrapment efficiency was 66 ± 2.3%, and drug loading was 7.9 ± 1.65%. The release profile was significantly higher in PBS (90%) than in diluted hydrochloric acid (30%) during 24 h of the study. The mucoadhesive function of the particles was examined in vitro using part of rat intestines. The highest adhesive % was observed for the chitosan-coated NPs. No adhesive properties were noticed for chitosan-free NPs (P-value > 0.05). This indicated that ECSNPs can be successfully utilized for sustained and controlled drug delivery of RPG through the GIT.\",\"PeriodicalId\":13515,\"journal\":{\"name\":\"Indonesian Journal of Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijc.82031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.82031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用乳化溶剂蒸发技术开发一种新型的缓释剂型,即负载瑞格列奈的壳聚糖-乙基纤维素纳米颗粒(RPG-ECSNPs)。以乙基纤维素(EC)为内相,壳聚糖(CS)为外相,使用表面活性剂,包括吐温80和泊洛沙姆188作为乳化剂,制备了不同粒径的RPG-ECSNP。CS和EC浓度的变化影响了体外药物释放、载药量和包封效率。RPG-ECSNPs的平均液滴大小和ζ电位分别为213±8.5nm和16.4±2.4mV。优化制剂的包封率为66±2.3%,载药量为7.9±1.65%。在研究的24小时内,PBS(90%)的释放曲线显著高于稀盐酸(30%)。使用部分大鼠肠道在体外检测颗粒的粘膜粘附功能。观察到壳聚糖包覆的NP的粘附率最高。不含壳聚糖的纳米颗粒没有粘附性能(P值>0.05)。这表明ECSNPs可以成功地用于通过GIT持续和控制RPG的药物递送。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Mucoadhesive Properties of Repaglinide-Loaded Nanoparticles: Mathematical Modelling through Machine Learning-Based Approach
This research work aims to develop a modified repaglinide-loaded chitosan-ethyl cellulose nanoparticles (RPG-ECSNPs) as a novel sustained-release dosage form with improved mucoadhesive properties using an emulsification solvent-evaporation technique. The RPG-ECSNPs with different particle sizes were prepared from various polymers containing ethyl cellulose (EC) as the internal phase and chitosan (CS) as the external phase, and the use of surfactants, including Tween 80 and poloxamer 188 as emulsifiers. In vitro drug release, drug loading amount, and entrapment efficiency have been influenced by changes in the concentrations of CS and EC. The mean droplet size and zeta potential of RPG-ECSNPs were 213 ± 8.5 nm and 16.4 ± 2.4 mV, respectively. The optimized formulation's entrapment efficiency was 66 ± 2.3%, and drug loading was 7.9 ± 1.65%. The release profile was significantly higher in PBS (90%) than in diluted hydrochloric acid (30%) during 24 h of the study. The mucoadhesive function of the particles was examined in vitro using part of rat intestines. The highest adhesive % was observed for the chitosan-coated NPs. No adhesive properties were noticed for chitosan-free NPs (P-value > 0.05). This indicated that ECSNPs can be successfully utilized for sustained and controlled drug delivery of RPG through the GIT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indonesian Journal of Chemistry
Indonesian Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
106
审稿时长
15 weeks
期刊介绍: Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信