面向张量分解的可编程存储器控制器

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Data Pub Date : 2022-07-17 DOI:10.5220/0011301200003269
Sasindu Wijeratne, Ta-Yang Wang, R. Kannan, V. Prasanna
{"title":"面向张量分解的可编程存储器控制器","authors":"Sasindu Wijeratne, Ta-Yang Wang, R. Kannan, V. Prasanna","doi":"10.5220/0011301200003269","DOIUrl":null,"url":null,"abstract":": Tensor decomposition has become an essential tool in many data science applications. Sparse Matricized Tensor Times Khatri-Rao Product (MTTKRP) is the pivotal kernel in tensor decomposition algorithms that decompose higher-order real-world large tensors into multiple matrices. Accelerating MTTKRP can speed up the tensor decomposition process immensely. Sparse MTTKRP is a challenging kernel to accelerate due to its irregular memory access characteristics. Implementing accelerators on Field Programmable Gate Array (FPGA) for kernels such as MTTKRP is attractive due to the energy efficiency and the inherent parallelism of FPGA. This paper explores the opportunities, key challenges, and an approach for designing a custom memory controller on FPGA for MTTKRP while exploring the parameter space of such a custom memory controller.","PeriodicalId":36824,"journal":{"name":"Data","volume":"1 1","pages":"468-475"},"PeriodicalIF":2.2000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Programmable Memory Controller for Tensor Decomposition\",\"authors\":\"Sasindu Wijeratne, Ta-Yang Wang, R. Kannan, V. Prasanna\",\"doi\":\"10.5220/0011301200003269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Tensor decomposition has become an essential tool in many data science applications. Sparse Matricized Tensor Times Khatri-Rao Product (MTTKRP) is the pivotal kernel in tensor decomposition algorithms that decompose higher-order real-world large tensors into multiple matrices. Accelerating MTTKRP can speed up the tensor decomposition process immensely. Sparse MTTKRP is a challenging kernel to accelerate due to its irregular memory access characteristics. Implementing accelerators on Field Programmable Gate Array (FPGA) for kernels such as MTTKRP is attractive due to the energy efficiency and the inherent parallelism of FPGA. This paper explores the opportunities, key challenges, and an approach for designing a custom memory controller on FPGA for MTTKRP while exploring the parameter space of such a custom memory controller.\",\"PeriodicalId\":36824,\"journal\":{\"name\":\"Data\",\"volume\":\"1 1\",\"pages\":\"468-475\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.5220/0011301200003269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.5220/0011301200003269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

张量分解已经成为许多数据科学应用中必不可少的工具。稀疏矩阵化张量乘以Khatri-Rao积(MTTKRP)是将高阶现实世界大张量分解为多个矩阵的张量分解算法中的关键核心。加速MTTKRP可以大大加快张量分解过程。由于其不规则的内存访问特性,稀疏MTTKRP是一个具有挑战性的内核加速。由于FPGA的能效和固有的并行性,在MTTKRP等内核上实现加速器具有很大的吸引力。本文探讨了在FPGA上为MTTKRP设计自定义内存控制器的机会、关键挑战和方法,同时探索了这种自定义内存控制器的参数空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Programmable Memory Controller for Tensor Decomposition
: Tensor decomposition has become an essential tool in many data science applications. Sparse Matricized Tensor Times Khatri-Rao Product (MTTKRP) is the pivotal kernel in tensor decomposition algorithms that decompose higher-order real-world large tensors into multiple matrices. Accelerating MTTKRP can speed up the tensor decomposition process immensely. Sparse MTTKRP is a challenging kernel to accelerate due to its irregular memory access characteristics. Implementing accelerators on Field Programmable Gate Array (FPGA) for kernels such as MTTKRP is attractive due to the energy efficiency and the inherent parallelism of FPGA. This paper explores the opportunities, key challenges, and an approach for designing a custom memory controller on FPGA for MTTKRP while exploring the parameter space of such a custom memory controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信