{"title":"叙利亚大马士革降水同位素的时间变异——对区域气候变化的影响","authors":"Zuhair Kattan, Saeid Nasser","doi":"10.1007/s44273-023-00004-x","DOIUrl":null,"url":null,"abstract":"<div><p>Records of stable isotopes (<sup>2</sup>H and <sup>18</sup>O), deuterium excess (<i>d</i>-excess) and tritium (<sup>3</sup>H) values in precipitation (P) during 1990–2022, together with long-term time series (1919–2022) of air temperature (T) and P-amount values at the Damascus station, were analysed to explore the seasonal and annual variability patterns of those parameters in P and assess the vulnerability to climate change in this area. Variation of the annual average air T values over the period 1919–1969 shows an increase gradient of ≈ + 0.1 °C/decade. However, a remarkable much higher gradient (+ 0.64 °C/decade) is calculated for the period 1990–2022. The average P-amount value calculated for the last three decades (≈185 mm) was lower by ≈28 mm, compared to the value (≈213 mm), relative to the reference period (1919–1969). This significant decline in the annual P-amount value by ≈11–13%, accompanied by an annual heating of 0.2–0.6 °C/decade in the annual air T, is likely the result of the climate change affecting this area. The linear relationships between annual average δ<sup>18</sup>O and annual average δ<sup>2</sup>H values versus time over the period 1990–2019 indicate increased gradients in both stable isotopes (≈0.3–0.5‰ and ≈1.1–3.2‰ per decade for δ<sup>18</sup>O and δ<sup>2</sup>H, respectively), accompanied with a decrease gradient of ≈0.9–1.1‰ per decade in <i>d</i>-excess values. Variability of annual <sup>3</sup>H concentrations towards low levels (< 6 TU) during the later years strongly suggests the return back towards the cosmogenic production of this radioisotope in the upper atmosphere. Information gained from this work would offer new insights to improve the understanding of the temporal variability of P isotopes and assess the risks associated with climate change on the natural water resources in the Eastern Mediterranean region.</p></div>","PeriodicalId":45358,"journal":{"name":"Asian Journal of Atmospheric Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44273-023-00004-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Temporal variability of precipitation isotopes in Damascus, Syria — implications for regional climate change\",\"authors\":\"Zuhair Kattan, Saeid Nasser\",\"doi\":\"10.1007/s44273-023-00004-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Records of stable isotopes (<sup>2</sup>H and <sup>18</sup>O), deuterium excess (<i>d</i>-excess) and tritium (<sup>3</sup>H) values in precipitation (P) during 1990–2022, together with long-term time series (1919–2022) of air temperature (T) and P-amount values at the Damascus station, were analysed to explore the seasonal and annual variability patterns of those parameters in P and assess the vulnerability to climate change in this area. Variation of the annual average air T values over the period 1919–1969 shows an increase gradient of ≈ + 0.1 °C/decade. However, a remarkable much higher gradient (+ 0.64 °C/decade) is calculated for the period 1990–2022. The average P-amount value calculated for the last three decades (≈185 mm) was lower by ≈28 mm, compared to the value (≈213 mm), relative to the reference period (1919–1969). This significant decline in the annual P-amount value by ≈11–13%, accompanied by an annual heating of 0.2–0.6 °C/decade in the annual air T, is likely the result of the climate change affecting this area. The linear relationships between annual average δ<sup>18</sup>O and annual average δ<sup>2</sup>H values versus time over the period 1990–2019 indicate increased gradients in both stable isotopes (≈0.3–0.5‰ and ≈1.1–3.2‰ per decade for δ<sup>18</sup>O and δ<sup>2</sup>H, respectively), accompanied with a decrease gradient of ≈0.9–1.1‰ per decade in <i>d</i>-excess values. Variability of annual <sup>3</sup>H concentrations towards low levels (< 6 TU) during the later years strongly suggests the return back towards the cosmogenic production of this radioisotope in the upper atmosphere. Information gained from this work would offer new insights to improve the understanding of the temporal variability of P isotopes and assess the risks associated with climate change on the natural water resources in the Eastern Mediterranean region.</p></div>\",\"PeriodicalId\":45358,\"journal\":{\"name\":\"Asian Journal of Atmospheric Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44273-023-00004-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Atmospheric Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44273-023-00004-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44273-023-00004-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
对大马士革站 1990-2022 年期间降水(P)中的稳定同位素(2H 和 18O)、氘过量(d-excess)和氚(3H)值记录,以及气温(T)和 P 量值的长期时间序列(1919-2022 年)进行了分析,以探索 P 中这些参数的季节和年度变化模式,并评估该地区易受气候变化影响的程度。1919-1969 年期间年平均空气温度值的变化显示出≈ + 0.1 °C/十年的上升梯度。然而,1990-2022 年期间的梯度明显更高(+ 0.64 °C/十年)。与参照期(1919-1969 年)的平均 P 值(≈213 毫米)相比,过去三十年的平均 P 值(≈185 毫米)减少了≈28 毫米。年 P 量值大幅下降≈11-13%,同时年气温升高 0.2-0.6 °C/十年,这很可能是气候变化影响该地区的结果。1990-2019 年期间,δ18O 和δ2H 的年平均值与时间的线性关系表明,这两种稳定同位素的梯度都在增加(δ18O 和δ2H 的梯度分别为每十年≈0.3-0.5‰和≈1.1-3.2‰),同时,d-excess 值的梯度每十年≈0.9-1.1‰。年 3H 浓度在后期几年向低水平(< 6 TU)的变化强烈表明,这种放射性同位素在高层大气中又回到了宇宙生成阶段。从这项工作中获得的信息将为更好地了解 P 同位素的时间变化和评估气候变化对东地中海地区天然水资源造成的风险提供新的见解。
Temporal variability of precipitation isotopes in Damascus, Syria — implications for regional climate change
Records of stable isotopes (2H and 18O), deuterium excess (d-excess) and tritium (3H) values in precipitation (P) during 1990–2022, together with long-term time series (1919–2022) of air temperature (T) and P-amount values at the Damascus station, were analysed to explore the seasonal and annual variability patterns of those parameters in P and assess the vulnerability to climate change in this area. Variation of the annual average air T values over the period 1919–1969 shows an increase gradient of ≈ + 0.1 °C/decade. However, a remarkable much higher gradient (+ 0.64 °C/decade) is calculated for the period 1990–2022. The average P-amount value calculated for the last three decades (≈185 mm) was lower by ≈28 mm, compared to the value (≈213 mm), relative to the reference period (1919–1969). This significant decline in the annual P-amount value by ≈11–13%, accompanied by an annual heating of 0.2–0.6 °C/decade in the annual air T, is likely the result of the climate change affecting this area. The linear relationships between annual average δ18O and annual average δ2H values versus time over the period 1990–2019 indicate increased gradients in both stable isotopes (≈0.3–0.5‰ and ≈1.1–3.2‰ per decade for δ18O and δ2H, respectively), accompanied with a decrease gradient of ≈0.9–1.1‰ per decade in d-excess values. Variability of annual 3H concentrations towards low levels (< 6 TU) during the later years strongly suggests the return back towards the cosmogenic production of this radioisotope in the upper atmosphere. Information gained from this work would offer new insights to improve the understanding of the temporal variability of P isotopes and assess the risks associated with climate change on the natural water resources in the Eastern Mediterranean region.