Phan Anh Duong , Bo Rim Ryu , So Soon Kyu , Hyeonmin Jeon , Hokeun Kang
{"title":"液化天然气作为绿色运输目标燃料的燃料电池集成系统的性能分析","authors":"Phan Anh Duong , Bo Rim Ryu , So Soon Kyu , Hyeonmin Jeon , Hokeun Kang","doi":"10.1016/j.ijnaoe.2023.100543","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a system integrating Solid Oxide Fuel Cells (SOFC) fueled by Liquefied Natural Gas (LNG) for marine vessels is proposed and analyzed. The system comprises Proton Exchange Membrane Fuel Cells (PEMFC), Organic Rankine Cycle (ORC), Gas Turbine (GT), Steam Rankine Cycle (SRC), and Waste Heat Boiler (WHB) combined with the SOFC system to enhance power generation and system performance. The PEMFC is particularly important for maritime applications, compensating for the disadvantage of the SOFC in terms of starting and response time according to the vessel's demand. The CO<sub>2</sub> capture system designated in this proposal not only helps to comply with international regulations and standards on emission control but also reduces the power consumption requirement for traditional CO<sub>2</sub> capture. To simulate and optimize the system's design, the Aspen HYSYS V12.1 process modelling software is employed. The thermodynamic models and equations for this proposed system are based on the first and second laws of thermodynamics. The exergy destruction equations and calculations for the main components are established and estimated to optimize the system's design and operation. The predicted performance of the proposed system is 68.76% for energy efficiency and 33.58% for exergy efficiency. The combined system for cold energy utilization and waste heat recovery generates more than 2100.42 kW equivalent, representing 35.6% of the total system generation. The results of the analysis indicate that when the current density is increased from 930 to 1930 A/m<sup>2</sup>, performance of system experience a reduction of 33.18% and 16.2% for the energy and exergy efficiencies, respectively.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"15 ","pages":"Article 100543"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of a fuel cells integrated system utilizing Liquified Natural Gas as fuel for a green shipping target\",\"authors\":\"Phan Anh Duong , Bo Rim Ryu , So Soon Kyu , Hyeonmin Jeon , Hokeun Kang\",\"doi\":\"10.1016/j.ijnaoe.2023.100543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a system integrating Solid Oxide Fuel Cells (SOFC) fueled by Liquefied Natural Gas (LNG) for marine vessels is proposed and analyzed. The system comprises Proton Exchange Membrane Fuel Cells (PEMFC), Organic Rankine Cycle (ORC), Gas Turbine (GT), Steam Rankine Cycle (SRC), and Waste Heat Boiler (WHB) combined with the SOFC system to enhance power generation and system performance. The PEMFC is particularly important for maritime applications, compensating for the disadvantage of the SOFC in terms of starting and response time according to the vessel's demand. The CO<sub>2</sub> capture system designated in this proposal not only helps to comply with international regulations and standards on emission control but also reduces the power consumption requirement for traditional CO<sub>2</sub> capture. To simulate and optimize the system's design, the Aspen HYSYS V12.1 process modelling software is employed. The thermodynamic models and equations for this proposed system are based on the first and second laws of thermodynamics. The exergy destruction equations and calculations for the main components are established and estimated to optimize the system's design and operation. The predicted performance of the proposed system is 68.76% for energy efficiency and 33.58% for exergy efficiency. The combined system for cold energy utilization and waste heat recovery generates more than 2100.42 kW equivalent, representing 35.6% of the total system generation. The results of the analysis indicate that when the current density is increased from 930 to 1930 A/m<sup>2</sup>, performance of system experience a reduction of 33.18% and 16.2% for the energy and exergy efficiencies, respectively.</p></div>\",\"PeriodicalId\":14160,\"journal\":{\"name\":\"International Journal of Naval Architecture and Ocean Engineering\",\"volume\":\"15 \",\"pages\":\"Article 100543\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Naval Architecture and Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2092678223000328\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678223000328","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Performance analysis of a fuel cells integrated system utilizing Liquified Natural Gas as fuel for a green shipping target
In this study, a system integrating Solid Oxide Fuel Cells (SOFC) fueled by Liquefied Natural Gas (LNG) for marine vessels is proposed and analyzed. The system comprises Proton Exchange Membrane Fuel Cells (PEMFC), Organic Rankine Cycle (ORC), Gas Turbine (GT), Steam Rankine Cycle (SRC), and Waste Heat Boiler (WHB) combined with the SOFC system to enhance power generation and system performance. The PEMFC is particularly important for maritime applications, compensating for the disadvantage of the SOFC in terms of starting and response time according to the vessel's demand. The CO2 capture system designated in this proposal not only helps to comply with international regulations and standards on emission control but also reduces the power consumption requirement for traditional CO2 capture. To simulate and optimize the system's design, the Aspen HYSYS V12.1 process modelling software is employed. The thermodynamic models and equations for this proposed system are based on the first and second laws of thermodynamics. The exergy destruction equations and calculations for the main components are established and estimated to optimize the system's design and operation. The predicted performance of the proposed system is 68.76% for energy efficiency and 33.58% for exergy efficiency. The combined system for cold energy utilization and waste heat recovery generates more than 2100.42 kW equivalent, representing 35.6% of the total system generation. The results of the analysis indicate that when the current density is increased from 930 to 1930 A/m2, performance of system experience a reduction of 33.18% and 16.2% for the energy and exergy efficiencies, respectively.
期刊介绍:
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.